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Abstract 

In this paper, we present a data-driven method for the uncertainty-aware prediction of chemical reaction yields. The 
reactants and products in a chemical reaction are represented as a set of molecular graphs. The predictive distribution 
of the yield is modeled as a graph neural network that directly processes a set of graphs with permutation invariance. 
Uncertainty-aware learning and inference are applied to the model to make accurate predictions and to evaluate their 
uncertainty. We demonstrate the effectiveness of the proposed method on benchmark datasets with various settings. 
Compared to the existing methods, the proposed method improves the prediction and uncertainty quantification 
performance in most settings.
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Introduction
In organic chemistry, the prediction of chemical reac-
tion yields is an important research topic in chemical 
synthesis planning [1, 2]. This enables the estimation of 
the overall yield of a complex synthetic pathway and the 
detection of low-yield reactions that negatively affect 
the overall yield. It also provides clues for designing new 
reactions that provide higher yields to save on the time 
and cost required for experimental syntheses.

Machine learning has achieved remarkable success in 
the data-driven prediction of chemical reaction yields 
[1, 3–7]. The main concept is to construct a prediction 
model that predicts the yield of a chemical reaction by 
learning from previously accumulated data compris-
ing a number of chemical reactions annotated with 
their experimentally measured yields. The successful 
application of a prediction model enables fast and effi-
cient estimation of chemical reaction yields without 

performing experimental syntheses, which are costly and 
time-consuming.

Early studies represented each chemical reaction as a 
fixed-size vector of handcrafted features, such as molecu-
lar fingerprints and chemical property descriptors, and 
constructed an off-the-shelf prediction model on top of 
the vector representation [3–5, 8]. The limitation of this 
approach is that the choice of adequate features relies 
on chemical knowledge and intuition, and some inher-
ent information to the original reaction may be lost 
in the representation. With advances in deep learning 
[9], recent studies have applied deep neural networks 
constructed on a more informative representation of a 
chemical reaction. Schwaller et al. [6, 10] used simplified 
molecular-input line-entry system (SMILES) to represent 
a chemical reaction. To predict the reaction yield, they 
fine-tuned a bidirectional encoder representations from 
transformers (BERT) model pre-trained using a reaction 
SMILES database [11] to predict the yield. Saebi et al. [7] 
represented a chemical reaction as a set of graphs, on 
which a graph neural network was constructed to predict 
the yield.

In this paper, we present an alternative method for pre-
dicting chemical reaction yields. As a prediction model, 
we adapt a graph neural network that directly operates 
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on the graph representation of a chemical reaction in 
a permutation-invariant fashion. We use uncertainty-
aware learning and inference in the model to make accu-
rate predictions of yields and determine the confidence of 
predictions.

Methods
Data representation
We suppose that a chemical reaction consists of a num-
ber of reactants and a single product. This chemical 
reaction is labeled with its reaction yield. Each instance 
is represented as (R,P , y) , where R = {GR,1, . . . ,GR,m} 
and P = {GP} are the set of m reactants and the resulting 
product in the reaction, respectively, and y is the reac-
tion yield. The number of reactants m can be different for 
each reaction.

Each molecule in R and P is defined as an undirected 
graph G = (V , E) , where V and E represent the set of 
nodes and the set of edges, respectively. The node fea-
ture vectors vj ∈ V and edge feature vectors ej,k ∈ E 
are associated with heavy atoms (e.g., C, N, O, and F) 
and their bonds (e.g., single, double, triple, and 
aromatic), respectively. Hydrogen atoms are treated 
implicitly. The number of heavy atoms and bonds in each 
molecule is the same as the number of node feature vec-
tors and edge feature vectors in the corresponding graph 
representation, respectively. Figure 1 illustrates an exam-
ple of the graph representation of a molecule.

For the j-th atom, v
j = (vj,1, . . . , vj,p) is a vec-

tor indicating the atom type, formal charge, degree, 
hybridization, number of hydrogens, valence, chiral-
ity, whether it accepts or donates electrons, whether it 
is aromatic, whether it is in a ring, and associated ring 
sizes. For the bond between the j-th and k-th atoms, 
e
j,k = (ej,k ,1, . . . , ej,k ,q) is a vector indicating the bond 

type, stereochemistry, whether it is in a ring, and whether 
it is conjugated.

Prediction model
To predict the reaction yield y, we introduce a predictive 
distribution for y conditioned on the set of reactants R 
and product P , denoted by pθ (y|R,P) , which is modeled 
as a normal distribution as follows:

where µ and σ 2 are the mean and variance of the distri-
bution, respectively. We parameterize the predictive dis-
tribution pθ using a neural network f that produces µ and 
σ 2 as a function of R and P with a set of parameters θ:

To construct the neural network f, we adapt the architec-
ture presented by Saebi et al. [7] to process two sets of 
molecular graphs with advanced neural network mod-
ules. Figure  2 illustrates the architecture used in this 
study. The architectural details of each component are 
presented next.

A message passing neural network (MPNN) [12] is 
used as the GNN component of f to process each molec-
ular graph G in R and P . The GNN is designed to take G 
as the input and return the graph representation vector r 
as the output:

In the GNN, we apply multiple message passing steps 
using an edge network as a message function and a gated 
recurrent unit (GRU) network as an update function to 
generate node representation vectors. We then apply a 
set2set model [13] as a readout function for global pool-
ing over the node representation vectors to obtain a 
graph-level embedding that is invariant to the order of 
the nodes. The embedding is sparsified by a fully-con-
nected layer to obtain the graph representation vector r . 
The use of the GNN renders the representation invariant 
to graph isomorphism.

(1)pθ (y|R,P) = N (y|µ, σ 2),

(2)(µ, σ 2) = f (R,P; θ).

(3)r = GNN(G).
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Fig. 1  Illustrative example of the graph representation for a molecule Fig. 2  Architecture of the prediction model
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We summate the graph representation vectors for 
R = {GR,1, . . . ,GR,m} . This makes the representation 
invariant with respect to the order of the reactants. The 
summated vector is concatenated with the graph repre-
sentation vector P = {GP} to generate the reaction repre-
sentation vector h:

The reaction representation vector h is further processed 
by a feed-forward neural network (FNN) with two output 
units. The first unit returns the predictive mean µ . The 
second unit returns the log predictive variance log σ 2.

The main advantages of the prediction model f pre-
sented in this study can be summarized as follows. First, 
the input for the model is the graph representation of a 
chemical reaction, which can directly encompass various 
atom and bond features regarding their chemical proper-
ties that make the representation more informative. Sec-
ond, the model can handle chemical reactions of varying 
sizes with different numbers of reactants as the input. 
Third, the output of the model is invariant to permuta-
tions of reactants in the input reaction and is also invari-
ant to permutations of atoms in each of the reactants/
products. Fourth, the output of the model specifies the 
corresponding predictive distribution, which allows for 
uncertainty-aware learning and inference.

Uncertainty‑aware learning
The learning procedure aims to train the prediction 
model f such that it can estimate the predictive mean µ 
and variance σ 2 of the unknown yield y for a chemical 
reaction (R,P) . For the model f to learn from data, we 
construct a training dataset of N chemical reactions and 
their yields, denoted by D = {(Ri,Pi, yi)}

N
i=1.

We train the model f based on the maximum likelihood 
estimation. Based on the normality assumption for the 
predictive distribution pθ , the log-likelihood is given by:

Given a training dataset D , the model is trained to mini-
mize the objective function J :

(4)h =

[

m
∑

l=1

r
R,l , rP

]

.

(5)

log pθ (y|R,P) = −
1

2
log(2πσ 2)−

1

2

(y− µ)2

σ 2

= −
1

2
log(2π)−

1

2

[

(y− µ)2

σ 2
+ log σ 2

]

.

which involves two learning objectives with the hyper-
parameter � that controls the relative strength of each 
objective. The first term is to minimize the conventional 
mean squared error over the training dataset D , which 
corresponds to the maximization of the log-likelihood 
over D under the homoscedasticity assumption. The sec-
ond term is to maximize the log-likelihood over D under 
the heteroscedasticity assumption. The first term con-
tributes to stabilizing the training with respect to the pre-
dictive mean µ . The second term enables the predictive 
variance σ 2 to quantify the aleatoric uncertainty caused 
by the inherent noise in D.

Uncertainty‑aware inference
Once trained, the prediction model f is used to pre-
dict the yields of new chemical reactions. We employ 
the Monte-Carlo (MC) dropout [14] for the Bayesian 
approximation of the model f. Following the Bayesian 
approach, the approximate predictive distribution q is 
given by

Given a query reaction (R∗,P∗) , we wish to predict the 
unknown yield y∗ of the reaction as well as to quantify the 
uncertainty of the prediction. We empirically derive the 
MC estimates by sampling T predictions {(µ̂(t)

∗ , σ̂
2(t)
∗ )}Tt=1 

based on stochastic forward passes through the model 
f with dropout applied. Because some hidden units are 
randomly dropped out at each forward pass, the T pre-
dictions vary for the same reaction. The variability in the 
predictions is primarily caused by the epistemic uncer-
tainty of the model f owing to the insufficiency of the 
training dataset D.

For prediction, the predictive mean can be estimated 
by averaging over {µ̂(t)

∗ }Tt=1:

This is used as the prediction of y∗.
For uncertainty quantification, the predictive vari-

ance can be estimated as:

(6)

J (θ) =(1− �) ·
1

N

N
∑

i=1

(yi − µi)
2

+ � ·
1

N

N
∑

i=1

[

(yi − µi)
2

σ 2
i

+ log σ 2
i

]

,

(7)q(y∗|R∗,P∗) =

∫

pθ (y∗|R∗,P∗)dθ .

(8)Eq(y∗|R∗,P∗)[y∗] ≃
1

T

T
∑

t=1

µ̂(t)
∗ .
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where µ̄∗ = 1
T

∑T
t=1 µ̂

(t)
∗  . This is used as the uncertainty 

score for the prediction. The predictive variance can be 
decomposed into two types of uncertainty [15]. The first 
term corresponds to the aleatoric uncertainty, which 
accounts for the statistical uncertainty caused by inher-
ent noise in the dataset D . The second term corresponds 
to the epistemic uncertainty, which accounts for the sys-
temic uncertainty in the model f caused by the insuffi-
ciency of D.

The prediction of chemical reaction yields supports 
the identification of high-yield reactions from a pool of 
possible candidates in an efficient manner. The prereq-
uisite is that the prediction model must be as accurate 
as possible. In practice, the prediction model may be 
imperfect and result in inaccurate predictions. To over-
come this issue, we can selectively use the model based 
on uncertainty quantification. Because a high prediction 
uncertainty tends to cause erroneous predictions, the 
rejection of uncertain predictions would be beneficial for 
the actual use of the prediction model. If the prediction 
uncertainty is sufficiently low, we can use the model with 
confidence to identify whether a reaction has a high yield. 
Otherwise, the model abstains from predicting. Rejected 
cases can be carefully investigated by chemists in terms 
of their yields.

Experimental investigation
Datasets
We investigate the effectiveness of the proposed method 
using the following two benchmark datasets: Buchwald-
Hartwig [3] and Suzuki-Miyaura [16]. In these datasets, 
each reaction was annotated with a measured yield rang-
ing from 0% to 100%. The summary statistics of the data-
sets are presented in Table 1.

The Buchwald-Hartwig dataset was released by Ahne-
man et  al. [3]. They conducted high-throughput experi-
ments on the class of Pd-catalyzed Buchwald-Hartwig 
C-N cross-coupling reactions. They experimented on 
combinations of 15 aryl halides, 4 ligands, 3 bases, and 
23 additives. A total of 3955 reactions were reported with 

(9)

Varq(y∗|R∗,P∗)[y∗] ≃
1

T

T
∑

t=1

σ̂ 2(t)
∗ +

1

T

T
∑

t=1

(

µ̂(t)
∗ − µ̄∗

)2
,

their measured yields. The studies [3–6] evaluated the 
performance of the chemical reaction yield prediction on 
this dataset.

The Suzuki-Miyaura dataset was released by Perera 
et  al. [16]. They conducted high-throughput experi-
ments on the class of Suzuki-Miyaura cross-coupling 
reactions. 15 couplings of electrophiles and nucleo-
philes across combinations of 12 ligands, 8 bases, and 4 
solvents were considered, resulting in measured yields 
for a total of 5760 reactions. The studies [6, 16, 17] have 
investigated this dataset.

For experimental investigations, we use 10 random 
shuffles for each benchmark dataset and 4 out-of-sam-
ple splits of the Buchwald-Hartwig dataset [3, 6].

Implementation
In the experimental investigation, we use the following 
configurations for the proposed method. For the GNN 
component of the model, the node representation vec-
tors and graph representation vectors have dimensions 
of 64 and 1024, respectively. The graph representation 
vectors were set to have higher dimensionality because 
they are summated over multiple reactants to obtain 
the reaction representation vector. The number of mes-
sage passing steps and set2set processing steps are both 
set to 3. Increasing the size of the GNN component may 
provide better performance, but it also incurs higher 
computational costs and memory usage. Thus, we set it 
to moderately large so that it can be trained in a reason-
able time. The FNN component of the model has two 
fully-connected layers with 512 dimensions, followed 
by an output layer. During training, we standardize the 
yield y to have a mean of 0 and a variance of 1 over the 
training dataset D . A dropout rate of 0.1 is applied to 
the fully-connected layers in the FNN component. The 
hyperparameter � in the objective function J  is set to 
0.1. L2 regularization with a factor of 10−5 is applied to 
the parameters θ . To train the model f, we update the 
parameters θ for 500 epochs using the Adam optimizer 
with a batch size of 128. The learning rate is set to 10−3 
for the initial epochs and decayed to 10−4 and 10−5 over 
the last 100 epochs. We did not consider hyperparam-
eter optimization through holdout validation, because 
it is unsuitable when the training dataset is very small. 
At inference, we set the number of forward passes T to 
30 for MC dropout. We use Equation 8 and Equation 9 
for the prediction and uncertainty score, respectively.

The proposed method is implemented using PyTorch 
in Python. The source code used in this study is 
available online at http://​github.​com/​seokh​okang/​
react​ion_​yield_​nn/. The results of the experimental 

Table 1  Description of benchmark datasets

Dataset No. reactions No. reactants 
per reaction

No. products 
per reaction

Buchwald-Hartwig 3955 6 1

Suzuki-Miyaura 5760 6–14 1

http://github.com/seokhokang/reaction_yield_nn/
http://github.com/seokhokang/reaction_yield_nn/
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investigations are reported and discussed in the follow-
ing section.

Results and discussion
Prediction and uncertainty quantification
We investigated the effectiveness of the proposed method 
for predicting the chemical reaction yields on the Buchwald-
Hartwig and Suzuki-Miyaura datasets. For the proposed 
method, we derived two ablations by adjusting the hyper-
parameter � in the objective function J  . For the first abla-
tion, the model was trained using only homoscedastic loss 
by setting � = 0 , which is equivalent to fixing the predic-
tive variance σ to 1. For the second ablation, the model was 
trained using only heteroscedastic loss by setting � = 1 . For 
baselines, we considered YieldBERT [6] and YieldBERT-DA 
[10], which demonstrated superior performance com-
pared to the other methods presented in the literature 

[3–5]. YieldBERT adapted a pre-trained BERT encoder 
[11] to predict the chemical reaction yield as a func-
tion of the reaction SMILES. YieldBERT-DA is an 
extension of YieldBERT based on data augmentation, 
which increases the quantity of the training dataset 
using SMILES randomization. For YieldBERT-DA, the 
prediction uncertainty score was computed using the 
prediction variance obtained from the test-time aug-
mentation, as implemented in [10]. The source codes 
for YieldBERT and YieldBERT-DA are available online 
at https://​github.​com/​rxn4c​hemis​try/​rxn_​yields/, 
which we used to reproduce the experimental results. 
Consequently, a total of five methods were compared: 
YieldBERT, YieldBERT-DA, and the proposed method 
with � = 0 , 1, and 0.1.

For performance evaluation, we split each dataset into 
training and test sets. We then trained the prediction 

Table 2  Comparison of prediction and uncertainty quantification performance on benchmark datasets
Dataset Training/test split Measure YieldBERT YieldBERT-DA Proposed

� = 0 � = 1 � = 0.1

Buchwald-Hartwig 70/30 MAE (%p) 3.990 ± 0.153 3.090 ± 0.118 3.009 ± 0.045 2.953 ± 0.058 2.920± 0.056

RMSE (%p) 6.014 ± 0.272 4.799 ± 0.261 4.509 ± 0.116 4.535 ± 0.136 4.433± 0.085

R2 0.951 ± 0.005 0.969 ± 0.004 0.973 ± 0.002 0.972 ± 0.002 0.974± 0.001

Spearman ρ – 0.439 ± 0.037 0.254 ± 0.027 0.445± 0.020 0.421 ± 0.031

50/50 MAE (%p) 4.792 ± 0.124 3.744 ± 0.150 3.614 ± 0.095 3.482± 0.107 3.497 ± 0.090

RMSE (%p) 7.288 ± 0.198 5.877 ± 0.348 5.484 ± 0.193 5.481 ± 0.355 5.387± 0.202

R2 0.928 ± 0.004 0.953 ± 0.006 0.959 ± 0.003 0.959 ± 0.005 0.961± 0.003

Spearman ρ – 0.460± 0.021 0.227 ± 0.021 0.419 ± 0.020 0.401 ± 0.014

30/70 MAE (%p) 6.075 ± 0.222 4.833 ± 0.167 4.677 ± 0.174 4.463± 0.150 4.483 ± 0.165

RMSE (%p) 9.338 ± 0.424 7.822 ± 0.463 7.227 ± 0.407 7.053 ± 0.439 6.970± 0.403

R2 0.882 ± 0.011 0.917 ± 0.010 0.929 ± 0.008 0.933 ± 0.009 0.934± 0.008

Spearman ρ – 0.464± 0.020 0.229 ± 0.035 0.407 ± 0.022 0.385 ± 0.029

20/80 MAE (%p) 6.862 ± 0.212 5.781 ± 0.252 5.605 ± 0.236 5.319 ± 0.179 5.311± 0.154

RMSE (%p) 10.306 ± 0.303 9.164 ± 0.668 8.567 ± 0.472 8.357 ± 0.400 8.204± 0.372

R2 0.857 ± 0.008 0.886 ± 0.017 0.901 ± 0.011 0.906 ± 0.009 0.909± 0.008

Spearman ρ – 0.457± 0.017 0.208 ± 0.044 0.373 ± 0.040 0.343 ± 0.029

10/90 MAE (%p) 8.607 ± 0.387 7.705 ± 0.236 7.605 ± 0.420 7.244 ± 0.229 7.196± 0.274

RMSE (%p) 12.393 ± 0.499 11.633 ± 0.293 11.468 ± 0.699 11.002 ± 0.436 10.875± 0.448

R2 0.793 ± 0.016 0.818 ± 0.009 0.822 ± 0.022 0.837 ± 0.013 0.841± 0.013

Spearman ρ – 0.432± 0.024 0.148 ± 0.036 0.384 ± 0.040 0.345 ± 0.031

5/95 MAE (%p) 12.117 ± 0.789 9.651± 0.338 10.056 ± 0.501 10.609 ± 1.610 9.677 ± 0.408

RMSE (%p) 16.740 ± 0.950 14.073 ± 0.687 14.636 ± 0.672 14.693 ± 1.467 14.041± 0.492

R2 0.622 ± 0.042 0.733 ± 0.027 0.711 ± 0.026 0.707 ± 0.063 0.734± 0.019

Spearman ρ – 0.411± 0.024 0.002 ± 0.058 0.398 ± 0.141 0.399 ± 0.058

2.5/97.5 MAE (%p) 15.979 ± 0.817 12.243 ± 0.631 12.409 ± 0.558 13.508 ± 2.745 11.747± 1.005

RMSE (%p) 20.463 ± 0.623 17.151 ± 0.677 17.384 ± 0.775 17.992 ± 2.530 16.586± 1.364

R2 0.436 ± 0.034 0.604 ± 0.031 0.593 ± 0.037 0.556 ± 0.130 0.628± 0.062

Spearman ρ – 0.381± 0.038 0.016 ± 0.067 0.309 ± 0.176 0.300 ± 0.075

https://github.com/rxn4chemistry/rxn_yields/
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model using the training set and evaluated its perfor-
mance on the test set. To examine the effects of train-
ing set size on performance, the training/test splits were 
varied as 70/30, 50/50, 30/70, 20/80, 10/90, 5/95, and 
2.5/97.5. Regarding prediction performance, we used the 
following three measures calculated on the test set: mean 
absolute error (MAE), root mean squared error (RMSE), 
and coefficient of determination (R2 ). Uncertainty quan-
tification performance was evaluated in terms of the 
Spearman rank correlation coefficient ρ between the 
absolute prediction error and uncertainty score on the 
test set [10, 18].

Table  2 reports the average and standard deviation of 
the results over the 10 repetitions. In terms of prediction 
performance, the proposed method outperformed all 
the baseline methods. Although YieldBERT-DA was the 

best baseline method, the MAE and RMSE values of the 
proposed method reduced by around 5 ∼10% compared 
to those of YieldBERT-DA on both benchmark datasets. 
The higher prediction performance indicates that the 
proposed method can provide more accurate predictions 
of yields for new reactions. Regarding uncertainty quan-
tification performance, the proposed method yielded a 
Spearman ρ comparable to that of YieldBERT-DA.

For the proposed method, the prediction performance 
with � = 1 was slightly better than that with � = 0 . The 
uncertainty quantification performance with � = 1 was 
far better than that with � = 0 , which implies that captur-
ing the aleatoric uncertainty is beneficial. Compared to the 
ablations, setting � = 0.1 yielded a better trade-off between 
prediction performance and uncertainty quantification 
performance. The results demonstrated that the use of 

Table 2  (continued)

Dataset Training/test split Measure YieldBERT YieldBERT-DA Proposed

� = 0 � = 1 � = 0.1

Suzuki-Miyaura 70/30 MAE (%p) 8.128 ± 0.344 6.598 ± 0.270 6.233 ± 0.207 6.118 ± 0.212 6.116± 0.223

RMSE (%p) 12.073 ± 0.463 10.524 ± 0.482 9.522 ± 0.454 9.495 ± 0.430 9.467± 0.459

R2 0.815 ± 0.013 0.859 ± 0.012 0.885 ± 0.010 0.885 ± 0.009 0.886± 0.010

Spearman ρ – 0.439± 0.018 0.324 ± 0.026 0.432 ± 0.024 0.425 ± 0.026

50/50 MAE (%p) 8.922 ± 0.235 7.539 ± 0.153 6.872 ± 0.089 6.702± 0.082 6.725 ± 0.089

RMSE (%p) 13.148 ± 0.270 11.797 ± 0.250 10.272 ± 0.138 10.225± 0.128 10.225± 0.135

R2 0.780±0.009 0.823 ± 0.007 0.866 ± 0.003 0.867± 0.003 0.867± 0.003

Spearman ρ – 0.439± 0.019 0.322 ± 0.021 0.432 ± 0.017 0.430 ± 0.012

30/70 MAE (%p) 10.094 ± 0.346 8.804 ± 0.249 8.021 ± 0.094 7.740± 0.109 7.847 ± 0.094

RMSE (%p) 14.614 ± 0.381 13.337 ± 0.357 11.726 ± 0.152 11.526± 0.166 11.593 ± 0.136

R2 0.729 ± 0.014 0.774 ± 0.012 0.825 ± 0.004 0.831± 0.005 0.829 ± 0.004

Spearman ρ – 0.432± 0.018 0.292 ± 0.012 0.428 ± 0.013 0.417 ± 0.008

20/80 MAE (%p) 11.229 ± 0.247 10.017 ± 0.338 9.147 ± 0.185 8.726± 0.172 8.793 ± 0.191

RMSE (%p) 15.966 ± 0.381 14.851 ± 0.576 13.115 ± 0.298 12.754 ± 0.316 12.734± 0.347

R2 0.676 ± 0.015 0.719 ± 0.022 0.781 ± 0.010 0.793 ± 0.010 0.794± 0.011

Spearman ρ – 0.432± 0.014 0.274 ± 0.020 0.429 ± 0.017 0.408 ± 0.018

10/90 MAE (%p) 13.528 ± 0.395 11.954 ± 0.443 11.439 ± 0.185 10.625± 0.249 10.739 ± 0.211

RMSE (%p) 18.734 ± 0.530 17.129 ± 0.683 15.967 ± 0.326 15.097± 0.421 15.164 ± 0.344

R2 0.554 ± 0.025 0.627 ± 0.030 0.676 ± 0.013 0.711± 0.016 0.708 ± 0.013

Spearman ρ – 0.389 ± 0.022 0.221 ± 0.027 0.390± 0.019 0.382 ± 0.019

5/95 MAE (%p) 15.695 ± 0.618 14.294 ± 0.507 14.214 ± 0.504 13.364± 0.223 13.451 ± 0.353

RMSE (%p) 21.181 ± 0.724 20.016 ± 0.661 19.421 ± 0.588 18.463± 0.308 18.511 ± 0.392

R2 0.430 ± 0.040 0.491 ± 0.034 0.521 ± 0.029 0.567± 0.014 0.565 ± 0.018

Spearman ρ – 0.355 ± 0.026 0.144 ± 0.052 0.389± 0.045 0.330 ± 0.034

2.5/97.5 MAE (%p) 17.666 ± 0.496 17.587 ± 0.690 18.061 ± 0.571 16.705± 1.090 17.189 ± 0.813

RMSE (%p) 22.967 ± 0.804 23.780 ± 0.793 24.121 ± 0.655 22.156± 1.273 22.943 ± 0.887

R2 0.330 ± 0.047 0.282 ± 0.047 0.261 ± 0.039 0.375± 0.072 0.331 ± 0.051

Spearman ρ – 0.291± 0.025 0.028 ± 0.054 0.280 ± 0.074 0.223 ± 0.081
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both homoscedastic and heteroscedastic losses helped to 
improve performance.

Out‑of‑sample prediction
We also evaluated the performance of the proposed 
method for out-of-sample prediction. As in [6, 10], we 
used four out-of-sample training/test splits of the Buch-
wald-Hartwig dataset, which we denote by Test 1, Test 
2, Test 3, and Test 4. In each split, certain additives are 
absent from the training set but only appear in the test 
set. The proposed method was compared with YieldBERT 
and YieldBERT-DA. The training configurations and 
evaluation scheme were the same as before. The experi-
ments were repeated five times independently using dif-
ferent random seeds.

Table  3 summarizes the results averaged over the five 
repetitions. Overall, the proposed method was comparable 
to the best of the baseline methods for out-of-sample pre-
diction. In terms of prediction performance, the proposed 
method performed best on Test 2 and Test 4, while was 
comparable or inferior to the best baseline on Test 1 and 
Test 3. Among the baselines, YieldBERT-DA yielded a lower 
performance than YieldBERT on average. For uncertainty 
quantification performance, the proposed method yielded 
the highest Spearman ρ for Test 1, Test 3, and Test 4.

Selective prediction with rejection
We investigated the effectiveness of the proposed method 
for selective prediction using 70/30 splits of benchmark 
datasets. For the proposed method, prediction uncertainty 
was quantified using the total predictive variance in Eq. 9. 

Because it can be decomposed into aleatoric and epistemic 
uncertainties, we conducted an ablation study to examine 
the effects of each component. The first ablation quantified 
the prediction uncertainty using the aleatoric uncertainty 
term. The second ablation used the epistemic uncertainty 
term. The proposed method was compared to the best 
baseline method, YieldBERT-DA, for which the uncertainty 
quantification was based on the test-time augmentation.

To evaluate the selective prediction performance, we 
rejected the prediction for a reaction if its uncertainty score 
was above a certain threshold. The threshold controls the 
trade-off between prediction accuracy and coverage. As 
performance measures, we computed the MAE and RMSE 
on the test set with various prediction coverage rates rang-
ing from 100% to 30%.

Tables  4  and  5 present the comparison results for the 
selective prediction performance in terms of the MAE 
and RMSE with various prediction coverage rates, which 
are summarized in Fig. 3. The results clearly demonstrated 
that a high uncertainty score for a reaction causes its pre-
dicted yield to be less accurate for all compared methods. 
Reducing the prediction coverage with more rejections 
led to a significant improvement in the prediction perfor-
mance. The proposed method outperformed YieldBERT-
DA in most cases. The MAE and RMSE decreased by over 
10% and were nearly halved at 90% and 40% coverages, 
respectively, for both datasets.

Regarding the two ablations of the proposed method, 
the selective prediction performance with the epistemic 
uncertainty was superior at higher prediction coverages, 
whereas that with the aleatoric uncertainty was better at 
lower coverages. Compared to the ablations, using the 

Table 3  Comparison of prediction and uncertainty quantification performance on out-of-sample splits of Buchwald-Hartwig dataset

Out-of-sample split Measure YieldBERT YieldBERT-DA Proposed ( � = 0.1)

Test 1 MAE (%p) 7.351 ± 0.099 7.015± 0.758 8.082 ± 0.827

RMSE (%p) 11.441± 0.342 11.761 ± 1.398 13.746 ± 1.175

R2 0.824± 0.010 0.811 ± 0.047 0.744 ± 0.042

Spearman ρ – 0.380 ± 0.065 0.454± 0.046

Test 2 MAE (%p) 7.266 ± 0.724 6.588 ± 0.328 6.300± 0.647

RMSE (%p) 11.144 ± 1.267 9.886 ± 0.741 9.476± 1.027

R2 0.829 ± 0.037 0.866 ± 0.020 0.876± 0.026

Spearman ρ – 0.494± 0.044 0.397 ± 0.043

Test 3 MAE (%p) 9.129 ± 0.745 11.052 ± 0.950 8.986± 0.314

RMSE (%p) 14.276± 0.820 18.041 ± 1.395 14.939 ± 0.622

R2 0.741± 0.030 0.585 ± 0.067 0.717 ± 0.024

Spearman ρ – 0.406 ± 0.065 0.423± 0.031

Test 4 MAE (%p) 13.671 ± 1.067 18.422 ± 0.620 13.190± 0.754

RMSE (%p) 19.679 ± 1.397 24.279 ± 0.494 18.774± 0.566

R2 0.444 ± 0.077 0.157 ± 0.034 0.496± 0.031

Spearman ρ – 0.366 ± 0.100 0.461± 0.040
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total predictive variance combining the aleatoric and epis-
temic uncertainty improved the performance by taking 
their individual strengths to detect erroneous predictions.

Conclusion
We presented an uncertainty-aware method for predict-
ing chemical reaction yields. We represented a chemical 
reaction as a set of graphs. We constructed a prediction 
model whose input was the graphs and output was the 

predictive mean and variance for the reaction yield. For a 
query reaction, the predictive mean of the model was used 
as the predicted yield and the predictive variance was 
used to quantify the uncertainty of the prediction, which 
allowed the model to avoid making predictions with high 
uncertainty. The effectiveness of the proposed method 
for chemical reaction yield prediction was successfully 
demonstrated through experimental validation on two 
benchmark datasets. We also demonstrated that a high 

Table 5  Comparison of selective prediction performance in terms of RMSE (%p)

Dataset Coverage YieldBERT-DA Proposed ( � = 0.1)

Aleatoric Epistemic Total Pred. Var.

Buchwald-Hartwig 100% 4.799 ± 0.261 4.433± 0.085 4.433± 0.085 4.433± 0.085

90% 4.129 ± 0.205 4.036 ± 0.130 4.003± 0.160 4.037 ± 0.161

80% 3.833 ± 0.206 3.796 ± 0.173 3.793 ± 0.182 3.765± 0.185

70% 3.583 ± 0.249 3.482 ± 0.176 3.424± 0.196 3.456 ± 0.166

60% 3.382 ± 0.282 3.050 ± 0.261 3.068 ± 0.211 3.001± 0.184

50% 3.171 ± 0.317 2.653 ± 0.187 2.716 ± 0.168 2.605± 0.115

40% 2.812 ± 0.218 2.338 ± 0.178 2.503 ± 0.197 2.300± 0.166

30% 2.518 ± 0.229 2.059 ± 0.245 2.299 ± 0.270 2.044± 0.235

Suzuki-Miyaura 100% 10.524 ± 0.482 9.467± 0.459 9.467± 0.459 9.467± 0.459

90% 9.485 ± 0.395 8.632 ± 0.334 8.592 ± 0.338 8.540± 0.310

80% 8.911 ± 0.373 8.254 ± 0.314 8.146 ± 0.403 8.098± 0.347

70% 8.473 ± 0.323 7.848 ± 0.329 7.787 ± 0.305 7.702± 0.397

60% 8.063 ± 0.353 7.260 ± 0.400 7.218 ± 0.343 7.160± 0.328

50% 7.439 ± 0.470 6.357 ± 0.470 6.503 ± 0.456 6.293± 0.466

40% 7.236 ± 0.521 5.126 ± 0.306 5.394 ± 0.306 4.980± 0.250

30% 6.754 ± 0.398 3.968 ± 0.152 4.337 ± 0.257 3.959 ± 0.252

Table 4  Comparison of selective prediction performance in terms of MAE (%p)

Dataset Coverage YieldBERT-DA Proposed ( � = 0.1)

Aleatoric Epistemic Total Pred. Var.

Buchwald-Hartwig 100% 3.090 ± 0.118 2.920± 0.056 2.920± 0.056 2.920± 0.056

90% 2.733 ± 0.099 2.684 ± 0.050 2.669± 0.056 2.683 ± 0.061

80% 2.534 ± 0.082 2.518 ± 0.064 2.514 ± 0.063 2.505± 0.065

70% 2.357 ± 0.092 2.302 ± 0.067 2.292± 0.067 2.293 ± 0.064

60% 2.191 ± 0.103 2.056 ± 0.099 2.070 ± 0.064 2.041± 0.069

50% 2.020 ± 0.105 1.820 ± 0.093 1.847 ± 0.075 1.803± 0.061

40% 1.824 ± 0.106 1.593 ± 0.086 1.672 ± 0.081 1.582± 0.077

30% 1.560 ± 0.098 1.368± 0.112 1.509 ± 0.115 1.372 ± 0.111

Suzuki-Miyaura 100% 6.598 ± 0.270 6.116± 0.223 6.116± 0.223 6.116± 0.223

90% 5.902 ± 0.247 5.589 ± 0.178 5.575 ± 0.191 5.542± 0.178

80% 5.415 ± 0.242 5.298 ± 0.174 5.269 ± 0.210 5.219± 0.192

70% 5.052 ± 0.211 5.018 ± 0.196 4.966 ± 0.183 4.939± 0.208

60% 4.690 ± 0.181 4.641 ± 0.218 4.579 ± 0.140 4.570± 0.188

50% 4.213 ± 0.214 4.025 ± 0.252 4.064 ± 0.179 3.989± 0.203

40% 3.921 ± 0.188 3.245 ± 0.140 3.372 ± 0.111 3.195± 0.145

30% 3.549 ± 0.120 2.510± 0.093 2.701 ± 0.118 2.514 ± 0.115
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predictive variance tends to cause a high prediction error, 
allowing for selective prediction with rejection.

The accurate prediction of chemical reaction yields with 
uncertainty quantification can assist in advanced synthe-
sis planning considering imposed constraints in practice, 
including availability, variability, and budget limits. Future 
research directions for improving prediction performance 
will be to enrich the data representation of chemical 
reactions to make it more informative by incorporating 
various atom/bond features and molecular descriptors 
associated with reaction yields.
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