
Freitas Gustavo and Verstraelen ﻿
Journal of Cheminformatics (2022) 14:7
https://doi.org/10.1186/s13321-022-00581-z

SOFTWARE

GloMPO (Globally Managed Parallel
Optimization): a tool for expensive, black‑box
optimizations, application to ReaxFF
reparameterizations
Michael Freitas Gustavo1,2  and Toon Verstraelen1*   

Abstract 

In this work we explore the properties which make many real-life global optimization problems extremely difficult
to handle, and some of the common techniques used in literature to address them. We then introduce a general
optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the
challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algo-
rithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridi-
zation of various optimization ideas, while also providing a substitute for human interventions and decisions which
are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than
traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and
ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than
normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and
providing a standardized interface and workflow manager.

Keywords:  ReaxFF, Global optimization, Reparameterization, Black-box optimization, Python, Parallel computation

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
High‑dimensional, expensive, black‑box optimization
In this work, we are particularly interested in tackling the
hardest of global optimization challenges: high-dimen-
sional, expensive, and black-box (HEB) problems [57].
Many real-life applications fall into this class. Black-box
optimization problems—ones for which no gradient
information is available—are generally regarded as some
of the most difficult to handle. This is because optimiz-
ers can easily be led astray by rough surfaces, and many
more function evaluations are typically needed for the
optimizer to learn about the structure of the problem.

High dimensionality also demands increased function
evaluations, but a high evaluation expense makes this
infeasible. The consequence of this complexity is a signif-
icant reduction in the number of optimization algorithms
which can be used. Numerous options exist to tackle
problems with one or two of these difficulties, but rarely
are all three addressed simultaneously [57].

A particular reason for our interest in HEB problems is
the practical challenges they introduce to the optimiza-
tion process. A practitioner faced with a new optimiza-
tion challenge must select an algorithm, and then values
for its hyper-parameters. These choices are made based
on some intuition of the problem, but are often shown to
be wrong as the task is investigated further. Often, opti-
mizations become iterative procedures to refine algo-
rithms and their settings, and to verify the quality and

Open Access

Journal of Cheminformatics

*Correspondence: toon.verstraelen@ugent.be
1 Center for Molecular Modeling, Ghent University, Ghent, Belgium
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1832-8413
http://orcid.org/0000-0001-9288-5608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00581-z&domain=pdf

Page 2 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

reproducibility of the minima found. When the task is
both difficult and expensive, this procedure can become
time-consuming and difficult.

Metaheuristics
Tackling these hard problems can only be done with
metaheuristics, i.e., the use of a two-tier algorithm. A
metaheuristic is any optimization method in which an
upper algorithm selects the starting conditions for a
lower one. The lower level is typically any local search
procedure and is called a heuristic. The heuristic may
provide a suitable solution to the problem but can-
not be used alone since it will most likely locate a local
rather than global minimum [5]. The use of metaheuris-
tics decouples, and attempts to balance, exploration and
exploitation.

Metaheuristics is a very broad term. The litera-
ture on it is extensive and varied, and the term is often
not used explicitly. Nevertheless, most optimizers are
metaheuristics. This includes solution-based methods
(which iteratively improve a single incumbent solution),
and population-based ones (like evolutionary algorithms
(EA) which improve a group of solutions). A similar, but
less broad, term which is also encountered is ‘multi-start’
optimization which refers to the repeated application of
local optimization steps [42].

It is not always obvious that an algorithm applies this
two-level structure. For example, the simulated annealing
technique uses a ‘temperature’ parameter to govern how
far the optimizer can look from the incumbent solution.
The temperature is decreased during the optimization to
slowly focus the optimizer on a minimum; this represents
the upper method. The lower-level heuristic is simply a
function evaluation, but in the Python SciPy [66] imple-
mentation of an annealing strategy this has been replaced
with a local search algorithm.

Another simple example is the efficient and popu-
lar basin-hopping (BH) strategy of Wales and Doye [67]
which couples a specially configured sampling strategy
with local optimizations.

Both of the above examples use Monte Carlo steps
as the metaheuristic to govern local search locations.
An important advance to this came in the form of tabu
search [20] which introduced ‘memory’—the concept of
previously visited points influencing subsequent steps.

In the case of population-based metaheuristics the
upper algorithm is the crossover and mutation of indi-
viduals, and the heuristic is evaluations or local searches.
Many novel ideas within the realm of EAs have stretched
the study of metaheuristics further. One such technique
is the use of subpopulations. This term has been used
to refer to the splitting of a problem into a collection of
subproblems that are solved simultaneously [70, 71], or,

more commonly, the use of multiple populations to solve
a problem [10, 50, 53]. The latter technique is used to
maintain diversity, and some algorithms allow for infor-
mation to be shared between the populations through
a process called ‘migration’ [1, 21]. ‘Niching’ is another
technique used by EAs to maintain population diversity
by ensuring the population has at most one member (or
a small number) in any given niche. Niching may be as
simple as discretizing the search space [43, 58] or intro-
ducing some other measure of difference between indi-
viduals [28, 46, 68]; the latter choice overlaps with the
concept of ‘order parameters’.

Order parameters are some measure, other than the
inputs and outputs of the optimization problem, by
which solutions are ranked or choices are made by the
meta-algorithm. These are perhaps the most powerful
aids to solving HEB problems because they introduce
extra problem-specific information to the optimizer.
If not selected carefully, they run the risk of biasing the
algorithm, and are generally not transferable to other
types of problems. However, the use of order param-
eter has been repeatedly shown to dramatically improve
performance by maintaining diversity and reducing the
enormous search space of high-dimensional problems [7,
9, 10, 28].

One technique which is ubiquitous in literature is
‘hybridization’—the act of coupling existing lower- and
upper-level algorithms in new ways [7, 23, 49, 50, 68].
Over the years, a plethora of exploration and exploitation
algorithms have been applied in every combination. Typ-
ically, they introduce some improvement, however, the
number of publications of this type has generated some
criticism [59]. We make the observation that, unfortu-
nately, many algorithms are published without making an
implementation available.

Optimizer supervision
In more recent years, in order to take advantage of the
advances in computational infrastructure, efforts have
been made to parallelize optimization algorithms. The
result is usually a parallel exploitation step (which simul-
taneously explores several basins), coupled to a single
serial global exploration step. In this way, full parallelism
is not achieved. A particularly interesting extension of
these efforts, which seems to have gotten little attention
in the literature, is the concept of using the metaheuristic
to monitor the performance of the lower-level heuristic.

Schutte et al. [54] tackled the problems of efficient
parallelism, and convergence to local minima, in a novel
multi-start approach. In their work, optimizers are char-
acterized as exploring for a certain number of iterations,
and then converging to a point and spending many itera-
tions fully focused on that area. Their algorithm assumes

Page 3 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

that instances of an optimizer will all spend about the
same number of iterations exploring a domain before
focusing. Thus, a single optimizer is run, its ‘explora-
tion’ time measured, and then several new optimizers are
spawned and allowed to run for the same period of time.
Through this approach the authors were ultimately able to
prove that multiple independent optimizations improved
the probability of global convergence. Rather than setting
the maximum number of function evaluations a priori,
Swersky et al. [61] devised a Bayesian-based termination
condition to stop optimizers which had reached conver-
gence. Although the idea shows promise, we found this
approach to be overly complex and computationally
expensive during our own testing. Yang et al. [70, 71], in
their extended CCFR and CCFR2 frameworks, dynami-
cally allocated computational resources to their subpopu-
lations based on performance.

From these works we note, generally, that optimizers
tend to converge to local minima, and spend several hun-
dred iterations exploring regions that should perhaps be
abandoned because a more promising region exists else-
where. If multiple optimizers were run simultaneously,
and compared in real-time, these convergences to poor
minima could be immediately identified and stopped.

Globally managed parallel optimization
Bearing in mind the difficulties associated with HEB
optimization, and adapting elements from the previously
mentioned sources, we present a novel optimization
framework called GloMPO (Globally Managed Parallel
Optimization). GloMPO is a customizable metaheuristic
that explicitly splits the algorithm levels. The upper level
functions as an optimization manager that launches, con-
trols, and supervises parallel executions of the lower-level
heuristic. The manager is designed to stand atop and
outside of traditional optimization algorithms, providing
real-time supervision, control, and information sharing.

Unique to GloMPO is its ability to act as a supervisor
and to terminate its subordinates early. This guarantees
the efficient use of both computational resources, and the
evaluation budget, while simultaneously increasing the
probability of finding better solutions through its multi-
start approach as proven in Schutte et al. [54].

GloMPO allows one to deal with many of the problems
mentioned above, while incorporating many of the best
ideas:

1	 By running optimizations in parallel (potentially
using different algorithms and settings), allowing for
automated termination, and providing opportunities
for real-time interventions by users, GloMPO deals
with a lot of the practical optimization challenges

mentioned at the end of “High dimensional, expen-
sive, black-box optimization”.

2	 We believe GloMPO is the first metaheuristic to for-
malize an active supervision and termination mecha-
nism in the way it is implemented here.

3	 GloMPO is constructed in an object orientated
manner such that all decision criteria can be pieced
together with simple code stubs. This makes the
framework totally customizable, and allows users to
hybridize and mix new optimizations together.

4	 As GloMPO grows, its library of components will
increase. This allows code to be reused efficiently.
Many algorithms in literature are not published
with a publicly available implementation. This lim-
its their usage to those users who are prepared to
reimplement the idea themselves. A framework like
GloMPO allows these algorithms to be mimicked
with existing code.

5	 The GloMPO manager provides a centralized and
efficient logging mechanism of points visited by its
children. This allows its decision-making machinery
to make memory-based choices like tabu search.

6	 GloMPO runs optimizations totally independently
and in parallel which maximizes computational
resource efficiency.

7	 GloMPO allows functions to return any extra infor-
mation they like. These can be used as order param-
eters by decision criteria to further guide the search.

In this way GloMPO touches on all of the most impor-
tant points mentioned in the literature review above in a
single user-friendly framework.

Several metaheuristic optimization frameworks (MOF)
have already been developed. Implementations were
found in both Java [12, 13, 36, 41, 47] and C++/C# [14,
15, 18, 34]. Unfortunately, some of these existing frame-
works are commercial [44] and others are no longer in
development [12, 13, 15, 45]. With few exceptions, the
MOFs we located are strictly evolutionary algorithms
which allow users to mix and match operators and selec-
tion functions.

We did not find a MOF implemented in Python. We
believe this would be a valuable contribution given the
language’s current and growing popularity in the data sci-
ence space [63]. GloMPO is also more versatile than most
implementations since it is not limited to EAs, and, as far
as we can tell, is unique in presenting a supervision struc-
ture with forced termination of parallel searches.

The remainder of this paper is dedicated to demon-
strating GloMPO’s abilities on a variety of optimiza-
tion problems. Some algorithmic details are included
in “Implementation” and “Methods” documents the
benchmarking procedure. “Results and discussion”

Page 4 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

details three tests performed through the framework
to demonstrate: (1) the advantages of its management
abilities, (2) its ability to mimic other optimization
algorithms by piecing together various strategies, and
(3) its assistance on real-life optimization problems in
which human interventions are often needed to guide
the process.

Implementation
General structure
GloMPO is a metaheuristic with two algorithmic levels,
and one is subordinate to the other. A schematic of the
GloMPO structure is given in Fig. 1. The upper level or
‘manager’ is responsible for monitoring, controlling, and
sharing information between structures of the lower level
(the ‘children’). The children are traditional optimization
algorithms which attempt to locate a minimum of the
cost function. Depending on one’s strategy, children can
be global or local search algorithms, i.e., GloMPO can
work as a metaheuristic, or act at an even higher level.

The rational for the supervision and control mecha-
nism is best demonstrated by illustration. An example of
typical optimizer behavior is given Fig. 2a. This shows the
objective function evaluations of ten CMA-ES optimizers
over time. The optimizers work independently, but were
all given the same optimization function; 20D Schwefel
(see “Optimization task”). Each optimizer was started
at a random location. For clarity, the x-axis refers to the
cumulative number of function calls used by all opti-
mizers. In the case of CMA-ES, each optimizer iteration
involves several function evaluations, only the best evalu-
ation of each iteration is shown in the figure.

Most optimizers spend some period of time search-
ing quite globally, and not substantially improving their
incumbent best solution. At some point, the optimizer
will rapidly converge towards a single value, shrink
its exploration radius, and spend a large number of Fig. 1  Schematic representation of the GloMPO premise

(a) (b)
Fig. 2  Comparison of (a) unmanaged and (b) GloMPO managed optimization of 20D Schwefel function using CMA-ES optimizers

Page 5 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

iterations on marginal improvements until a desired tol-
erance is achieved. It is very rare for substantial progress
to be made once an optimizer is within this ‘focus’ phase.
It follows then, that focusing can represent a significant
waste of function evaluations if another child is simulta-
neously exploring a better region. Some optimizers never
reach this focus phase and continue to explore without
convergence for hundreds of iterations.

Both of these behaviors represent inefficiencies in the
use of function evaluations. By monitoring such optimiz-
ers in real-time, the manager is able to step-in and ter-
minate poor performing children, and start new ones in
their stead. This replaces human interventions which are
typically required during HEB optimizations.

Figure 2b shows an example of what managed opti-
mizer trajectories look like. In this figure, the same 20D
Schwefel function was used. The number of function
evaluations was limited to the same number used by the
unmanaged optimizers. Within this same limit, more
optimizers are started, more minima are identified, and
optimizers are only allowed to focus on the deepest of
them. As a consequence, a lower overall minimum is
found.

In this way GloMPO aims to use the available iteration
budget more efficiently. A second important attribute of
this approach is the ability to use information from ear-
lier children to improve the starting position and con-
figurations of future children. In fact, information can
be shared between optimizers during the optimization.
The benefits of these are explored fully in “Results and
discussion”.

Python implementation
GloMPO has been implemented in an open-source
Python package [16]. For ease of use, and to allow for
customization by users of all programming strengths, a
plug-and-play approach has been chosen for each deci-
sion criterion. In this way an optimization can be config-
ured by a collection of small, easy-to-write code stubs.
GloMPO comes bundled with several of the most com-
mon and basic classes, but the user is free to implement
their own. Figure 3 shows a simplified workflow of the
manager control loop, with the user-customizable code
stubs colored in green. In total, the five classes allow for a
great level of customization and can be used to construct
sophisticated workflows. They can also be extremely
straightforward for ease of use. The choice depends
entirely on the difficulty of the task, and the user’s insight.
Each of the five types of customizable classes are detailed
below:

Fig. 3  Simplified decision tree of GloMPO manager loop with
customizable modular code stubs colored in green

Page 6 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

Optimizers GloMPO can use any existing optimi-
zation algorithm as one of its children. Wrappers
already exist for CMA-ES [26] and Facebook’s
Nevergrad [48], which is itself a wrapper around
most common algorithms. This gives GloMPO
greater flexibility than some MOFs in literature
which are limited to EAs.

Selectors Selectors chose which optimizer to start
from an available pool of configurations. GloMPO
is able to manage different types of children at
once. This allows the manager to start a certain
type of algorithm early in the optimization and
replace them with another type later. The selection
can also be based on feedback from other children.

Generators These functions provide starting loca-
tions for new optimizers. One type of generator
could provide random points, while another might
base its choice on promising regions of the domain
seen by existing children, a third might use a Latin
hypercube sampling approach to ensure that the
children are adequately distributed throughout the
space. Generators act as the upper algorithm of
metaheuristics.

Hunters The decision criteria for terminating an
optimizer early are provided by hunter objects.
These are simple code stubs which GloMPO allows
to be combined together using logical statements
to create sophisticated and specialized termina-
tion conditions. For example, one might begin an
optimization with one type of optimizer to quickly
identify basins of interest, terminate these, and
then begin a second type of local optimizer to
explore these basins and terminate them if they
converge to higher values than another child.

Checkers Similar to hunters, these conditions can
also be combined to control when the manager as a
whole stops its routine. This can be based on com-
putation time, number of iterations used, reaching
a target function value, converging a number of
children, or any other such condition.

GloMPO supports parallelism at two levels: (1) the
manager parallelizes the optimizers, (2) the optimizers
may parallelize the function evaluations (if the optimizer
algorithm supports this). Both levels can be threaded
and run as processes. The choice depends on the evalu-
ation speed of the objective function as well as inter-
faces to external software (i.e., whether they are thread/
multiprocess-safe or not). GloMPO does not currently
support parallelism over multiple nodes, however, it is a

feature we are interested in implementing in the future.
For a more detailed explanation of the implementation,
please see the Additional file 1: Section S2.

Methods
As a framework, GloMPO’s scope is enormous. There is
much to uncover in terms of optimal configurations, how
to make hunting more intelligent, which tasks or opti-
mizers are suited to management, etc. As an introductory
paper, we have limited ourselves to three goals, and leave
other questions unanswered for further investigation.

In the following sections, we will demonstrate the
following:

A	 Active supervision and forced termination (hunting)
of parallel optimizers can make use of an evaluation
budget more efficiently and locate better minima;

B	 GloMPO can be used to mimic and outperform
other metaheuristic algorithms;

C	 GloMPO can aid users in finding better minima for
extremely hard, real-life, minimization problems;
namely, the reparameterization of ReaxFF force
fields.

Benchmark test procedure
To demonstrate GloMPO’s effect, in each of the three tests
above, it must be shown that GloMPO is statistically more
likely to find lower minima. This is done by comparing
the final results of unmanaged and managed optimization
schemes when given the same task and evaluation budget,
and repeated several times. In the context of this work, we
refer to the unmanaged optimizations as ‘serial’ optimiza-
tions. This is in reference to: (1) metaheuristic algorithms,
like basin-hopping and dual annealing (DA), which seri-
ally apply local optimizations, and (2) the typical approach
when dealing with difficult problems of repeating optimi-
zations several times to offset the risk of converging to a
local minimum.

Algorithm 1 details the benchmark test devised to fairly
compare serial and GloMPO optimizations. In it ns opti-
mizers are run serially, and each is allowed to converge
naturally without limits on time or number of iterations
used; in other words, they search until a function tolerance
or other internal convergence criteria is reached. The sum
of all function evaluations used by each serial optimizer
(serial_evals_used) forms the budget for the GloMPO
competitor. A serial/GloMPO pair linked in this way
through the evaluation budget is referred to here as a ‘bout’.
GloMPO is given the same optimization task ( f (·) ) and
uses the same child optimizers as in the serial run, in this
way any difference in performance is directly attributable

Page 7 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

to the management aspects of GloMPO. GloMPO man-
ages ng optimizers at once; each of these may be shut down
and replaced at any time, but the total alive at any one
moment is ng . The winner of the bout is the optimization
approach which achieves the lowest answer. A total of nb
bouts are performed for statistical significance.

We note that the results of the benchmark test are a func-
tion of the hunting paradigm and the optimizer(s) used.
Of course, these two aspects are also further correlated;
hunting works on optimizers differently, and their com-
bined behavior depends on the minimization task. It would
be beyond the scope of a single paper to investigate every
possible combination of optimizer, task, hunter, etc. Thus,
these results should not be inferred to apply generally, but
rather to be indicative of the advantages that are possible.

Algorithm 1 Benchmark test algorithm
1: procedure BenchmarkTest(nb, ns, ng , f(·))
2: nglompo wins ← 0

3: for i in {1, 2, 3, . . . , nb} do

4: nserial evals used ← 0

5: fserial best ← ∞
6: for j in {1, 2, 3, . . . , ns} do

7: fmin, nevals ← NormalOptimization(f(·))
8: nserial evals used ← nserial evals used + nevals

9: if fmin < fserial best then

10: fserial best ← fmin

11: end if

12: end for

13: fGloMPO best ← GloMPO(f(·), nserial evals used, ng)

14: if fGloMPO best < fserial best then

15: nglompo wins ← nglompo wins + 1

16: end if

17: end for

18: return nglompo wins

19: end procedure

Hunters
Four hunter conditions, detailed in Table 1, are used in
this work. The basic hunter template was:

The parameter values used for the hunters depended on
the function being optimized, and were selected ad hoc.
The ValueAnnealing and ParameterDistance
hunters were not used in tests using N-CMA (see “Child
optimizers”).

The hunting configurations used in this paper represent
common-sense empirical termination condition which
one might employ when optimizing a new function about
which little is known. In our testing we found that the
hunter configuration was very important to GloMPO’s
performance. The development of a more rigorous hunt-
ing framework would be an important next step in devel-
opment. Readers can consult the results files for detailed
hunting configurations.

Test A: advantages of management
The purpose of the first experiment, Test A, is to inves-
tigate the effect of GloMPO’s supervision and control
machinery. These tests aim to demonstrate that:

1	 Forced termination of optimizers results in a more
efficient use of an evaluation budget; and,

2	 Information sharing between optimizers through the
manager increases performance.

(EvaluationsUnmoving

and ValueAnnealing)

or BestUnmoving

or ParameterDistance.

Table 1  Description of the types of hunters used in the benchmark tests

Hunter class Description

EvaluationsUnmoving (call, tol) Calculates the standard deviation of the last calls function evaluations. Returns true if this
value is smaller than tol times the last function evaluation. Used to terminate an optimizer
when its function evaluations are unchanging, i.e., when it has reached its focus phase.

ValueAnnealing (med_kill_chance) The probability of returning a kill signal follows an exponential distribution based on the dif-
ference in function value between two optimizers. The chance of killing an optimizer twice
as large as the lowest optimizer is med_kill_chance. Optimizers which are exploring
values which are close to one another are less likely to be killed than those far apart. Used as
a way to save optimizers which are competitive and may become the best.

BestUnmoving (calls, tol) Kills an optimizer if it has not improved its best ever function evaluation by at least tol
percent in calls. Used to terminate optimizers that explore for too long without focusing
on to a point.

ParameterDistance (relative_tolerance) Kills optimizers which are exploring points in the domain which are separated by a distance
less than relative_tolerance times the maximum distance between any two points
within the bounded domain. Used to terminate optimizers in the same basin.

Page 8 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

Optimization task
Test A explores various global optimization test func-
tions. Such functions are typically very quick to evaluate,
and thus allow us to test a wide array of configurations to
demonstrate that the management effect is robust. They
have, however, been rightly criticized in the past for not
providing a sufficient challenge for state-of-the-art opti-
mizers [4, 8, 39, 51] and creating the incorrect impression
that difficulty scales with dimensionality.

In the scope of this test, however, we are not interested
in identifying a GloMPO configuration that competes
with state-of-the-art optimizers and consistently finds
the global minimum. The aim here is to demonstrate
that an optimizer which struggles on a particular func-
tion, can benefit from GloMPO’s management aspects
of information sharing and early termination. As will be
clear from the results, the CMA-ES optimizer used here
did struggle with these functions and did not find the
global minimum with any regularity. As a first step in
our work, we did not judge adjustments to the traditional
functions to be necessary.

Four test functions are used in this work. Brief descrip-
tions are provided below, and the interested reader can
consult the Supplementary Information for visualizations
and the explicit functions (Additional file 1: Section S1):

Rastrigin The Rastrigin function [29] is globally uni-
modal around the minimum, but the surface is highly
oscillatory. Population-based optimizers can be
expected to rapidly near the origin (where the global
minimum is located), but then get trapped in the
nearby local minima when their search radii begin to
shrink. Tested in 66 dimensions.

Deceptive The Type III Deceptive test function [52]
is particularly challenging because there is a very
small basin of attraction around the global mini-
mum. The region immediately surrounding it is
sloped away from the global minimum to various
local minima. The location of the global minimum,
which is customizable in the function, was placed
randomly each time it is used in this work. Tested in
20 dimensions.

Schwefel The Schwefel function [33] has several fea-
tures making it particularly difficult to optimize: (1)
unlike the Rastrigin test function, it does not have a
global gradient leading optimizers to the minimum;
(2) it has a much larger search domain; (3) the global
minimum is hidden near the boundaries where the
function becomes more oscillatory; and (4) the sec-
ond best solution is located very far away from the
best. Tested in 20 dimensions.

Shubert The Shubert function is highly multimodal
with degenerate and periodically distributed global
minima (i.e., equal function values at different loca-
tions in parameter space). Very good second-best
solutions immediately surround each global mini-
mum entrapping many optimizers. It is investigated
here to test the ability of different optimization strat-
egies to identify multiple degenerate global minima.
Tested in 4 dimensions.

Child optimizers
CMA-ES is selected as the child algorithm in these tests.
This is a popular global optimization strategy, suited to a
wide array of problems. A particularly appealing property
of this algorithm is that it has only a few hyper-param-
eters, with sensible defaults for most as functions of the
dimensionality of the problem [25]. A further consider-
ation was the fact that this optimizer proved most effi-
cient in locating good minima in the reparameterization
of ReaxFF force fields in the work of Shchygol et al. [58];
this optimization challenge appears in “Test C: GloMPO
on ReaxFF”.

The implementation used is adapted from the Python
package available at Hansen et al. [27]. Most settings are
unchanged from the defaults set in this package. The ini-
tial setting for the parameter governing how far the algo-
rithm can explore from the incumbent solution ( σ0 ) is set
to half the distance between the upper and lower bound
(Eq. 1)—which is the same in all dimensions for the
test functions. σ0 is purposely broad to make the initial
starting location uninformative, and force a very global
search.

To investigate GloMPO’s ability to share information
between its children, CMA-ES is used in a second way
to make it compatible with receiving outside input. It has
been previously shown that injecting good solutions into
CMA-ES’s population can be very effective at improving
its performance [24]. We extend this further using the
GloMPO framework to dynamically share good itera-
tions between CMA-ES instances.

Algorithm 2 shows the architecture of this approach. A
parameter vector producing a very low function value is
seeded to the algorithm, and every several iterations this
candidate is forced into the next iteration’s sampled pop-
ulation. Practically, an incumbent solution is seeded by
selecting the best ever solution from previous optimizers
as the starting location. If an improved solution is found,
the injected candidate is updated. The result is that the

(1)σ0 =
xmax − xmin

2

Page 9 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

algorithm can still maintain a wide search radius but is
unable to move its mean too far away from the good solu-
tion. This injection is a form of elitism, but, in practice,
does not result in the same loss of exploration that true
elitism does. The injections act to nudge the algorithm’s
mean back towards the good solution, hence the name
given hereafter: nudging-CMA or N-CMA. In a man-
aged setting, the updates to the injected candidate may
also be obtained from external sources i.e., other children
GloMPO is managing.

Algorithm 2 Nudging-CMA algorithm
1: procedure NCMAAlgo(xincumbent, iinject frequency, f(·))
2: i ← 0

3: while not CMAAlgo.converged do

4: i ← i+ 1

5: if i mod iinject frequency is 0 then

6: CMAAlgo.ForceIntoSamplePop(xincumbent)

7: end if

8: X ← CMAAlgo.SamplePop

9: fsampled pop ← f(X)

10: CMAAlgo.Update(fsampled pop)

11: for fi in fsampled pop do

12: if fi < f(xincumbent) then

13: xincumbent ← Xi

14: end if

15: end for

16: if is glompo managed then

17: xinject, finject ← GloMPO.ReceiveMessage

18: if finject < f(xincumbent) then

19: xincumbent ← xinject

20: end if

21: end if

22: end while

23: return xincumbent, f(xincumbent)

24: end procedure

Other settings
Four other settings are also investigated. They include
the number of optimizers used by serial and GloMPO

optimizations, and their convergence settings, which in
this case refers to the function tolerance. These are pri-
marily explored to illustrate GloMPO’s robustness to
such changes.

Two generators are used. This refers to the starting
guesses for the optimizers. Generally, this was selected by
uniformly sampling from the parameter space. In most
of the configurations using N-CMA, the optimizers were
started at the manager’s incumbent solution, and this
also forms the initial nudging candidate. The alternatives
for all these settings are given in Table 2.

Benchmark test configurations
Testing every combination of the above settings would
not be practical. The configurations actually selected for
testing are built up methodically. We believe them to be
generally representative, but, of course, we are only able
to test a small fraction of all possible configurations,
which are themselves a random subset of an infinite set
of possible configurations. In total, 48 combinations are
tested in 4800 bouts. Each set of bouts is listed in Addi-
tional file 1: Table S1 of the Supplementary Information
and given a set identification number.

The first configuration tested is Set 12 which uses the
Schwefel function (objectively the hardest function as
outlined in “Optimization task”), default CMA-ES set-
tings, random start locations, and ten and four serial
and GloMPO optimizers respectively; the latter two set-
tings chosen ad hoc. From this configuration, tests are
performed by changing the number of serial optimiz-
ers, and then the number of GloMPO optimizers are
changed. Returning to Set 12, the convergence settings
are changed. The other test functions are then tested at
the highest and lowest convergence settings. The N-CMA
tests follow the same pattern of changing only one setting
at a time, but only the Schwefel function is studied.

It should be emphasized that the choices we made for
Test A with regards to the generator, large initial opti-
mizer search radius etc. are purposely not very sophisti-
cated ones. The aim here is to isolate the effect of hunting
as far as possible, so that differences in performance can
be solely attributed to that effect. We did not attempt

Table 2  Summary of other configuration settings

Property Tested values Comments

Convergence 10-6 , 10-11 and 10-20 Refers to the tolfun convergence setting of the individual CMA optimizer instances

Max Serial Jobs ( ns) 5, 10, 15 and 20 Number of unmanaged optimizers run in a single bout

Max GloMPO Jobs ( ng) 2, 4, 7 and 10 Number of managed optimizers alive at any moment during a GloMPO managed bout. Note, this is not
the total number of optimizers used as GloMPO may replace any of its children at any time

Generator Random, Incumbent Random: uniformly randomly selected point in parameter space. Incumbent: best point seen thus far by
the manager

Page 10 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

to tune GloMPO configurations to become competitive
with state-of-the-art optimizers on these functions.

Test B: GloMPO as a framework
The aim of Test B is to demonstrate a more sophisticated
GloMPO configuration. It shows that GloMPO is flex-
ible enough to mimic popular and efficient metaheuristic
algorithms and, combined with the advantages of man-
agement demonstrated in Test A, produces better results
than the unmanaged counterpart.

Child optimizers
For this test we make use of two very popular, and effec-
tive metaheuristic algorithms; dual annealing (DA) [69]
and basin-hopping (BH) [67]. We have selected these par-
tially because they have been implemented in Python’s
SciPy library [66]. This package is extremely popular,
and a first port of call for non-experts looking for certain
mathematical routines (like optimizations).

These routines may no longer be state-of-the-art, but
they remain popular because their algorithms are quite
intuitive. Also, in the context of this test, we are most
interested in demonstrating how such metaheuristic
algorithms can work within the GloMPO framework.

Algorithm details for the two routines used here are
included in Additional file 1: Section S3. Broadly speaking,
both algorithms use a Monte Carlo step-taking algorithm as
their metaheuristic and launch periodic local search algo-
rithms. BH launches local searches every iteration, while
DA does so more infrequently based on internal decision

criteria. Unless otherwise stated in Table 3, the default set-
tings of the SciPy v1.2.1 implementation are used.

Test strategy
The “Benchmark test procedure“ is configured for Test B
as follows:

1	 The ‘serial’ run used a single execution of the BH or
DA routines as implemented in SciPy. A single repeat
( ns = 1 ) was used since the aim of these experiments
was to investigate a metaheuristic strategy’s perfor-
mance with and without GloMPO management and
information sharing. To verify that GloMPO’s per-
formance cannot be attributed solely to multiple start
locations, some tests are repeated with ns = 4.

2	 The GloMPO run splits the metaheuristic into their
‘upper’ and ‘lower’ routines. The upper algorithm is
a Monte Carlo-based step procedure, and the lower
one is a BFGS local optimization. The upper routine
is used as a ‘generator’ to identify starting locations
for child optimizers (the lower routine).

3	 As before, both competitors are limited to the same
number of function evaluations.

4	 The GloMPO generators are designed to match their
parent algorithm as closely as possible, but some
modifications were required to support GloMPO’s
asynchronous parallel behavior since both upper-
level algorithms are sequential. Details have been
provided in Additional file 1: Section S2.

Table 3  Customized settings used for the basin-hopping and dual annealing algorithms

SciPy parameter name Description Value Comment

Basin-Hopping

 T Temperature 0.8 Changed to match the values used by Wales and Doye
[67]

 stepsize Maximum step in each dimension that can be taken
by the random displacement

1

 niter Number of Monte Carlo steps and local optimizations 100 5000 was used by Wales and Doye [67] but their results
show that global minima were often found in the first
few hundred iterations. Since we are not interested
in actually obtaining the global minimum, we select
a value of 100 to make the cost of the optimizations
bearable. This is sufficiently long in lower dimensions,
to locate the global minimum, and sufficiently long
in higher dimensions to make a fair comparison of
performance

Dual Annealing

 initial_temp Initial temperature 50000 Governs the maximum step the random displacement
can take. Increased from the default to make the opti-
mizer more exploratory since early test work showed a
propensity to get stuck in the first minimum located

 restart_temp_ratio Ratio between current and initial temperatures which
resets the temperature to the initial value

0.01 Increased from default to actually trigger new restarts
and force the optimizer to explore other minima

Page 11 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

5	 Tests were repeated in 30, 75, 150 and 225 dimen-
sions. Full configuration details are given in Addi-
tional file 1: Table S2.

The distinction between serial and GloMPO configura-
tions is that the GloMPO configuration runs local opti-
mizations in parallel, has the power to terminate them
early, and centralizes information from multiple sources
into a single generator step.

Optimization task
In this test, we choose to make use of a more challeng-
ing real-life global optimization challenge: the optimal
arrangement of particles in a Lennard-Jones (LJ) energy
potential [67]. This has the advantages of being harder
than the previous test functions, but still cheap enough to
be optimized many times.

Whenever two atoms approach one another in space,
they experience an attractive force pulling them together.
As the distance between them decreases, so does the
force of attraction. At a critical distance, the atoms begin
feeling a repulsive force which typically increases very
steeply. The simplest way to describe this interaction is
through the use of the Lennard-Jones energy potential
in Eq. 2 where E is the potential energy of the particle
arrangement, X is the matrix of d-dimensional Cartesian
coordinates describing the location of N particles, ǫ is the
depth of the energy minimum, σ governs the location of
the minimum, and rij is the Euclidean distance between
atoms i and j.

The optimization problem is to find the arrangement
of particles which minimizes the energy in Eq. 2. The
dimensionality of the optimization problem is Nd, thus,
the 30-, 75-, 150- and 225-dimension problems opti-
mized here had 10, 25, 50 and 75 atoms, respectively.

The Lennard-Jones potential energy surface is char-
acterized by many minima located near steep and non-
finite regions. Due to the fact that a translation, rotation
or permutation of particles will not change the energy
value, the surface has very many degenerate global and
local minima. In our tests, as is commonly done in litera-
ture, we have set the parameters ǫ = σ = 1.

The BFGS local optimization strategy was given access
to analytical derivatives; thus, this is not an HEB prob-
lem since it is not black-box. We make this choice to give
the serial optimizers the best performance possible. If
the derivative function were not made available to the
local optimizer, a numerical approximation would be

(2)E(X) = 4ǫ
∑

i<j

[

(

σ

rij

)12

−

(

σ

rij

)6
]

constructed by finite differences. This increases the eval-
uation cost and produces longer optimizer tails which
GloMPO could potentially terminate. In our studies, not
using analytical gradients improved GloMPO’s perfor-
mance in comparison to the serial optimizer even further
than the results included here.

Test C: GloMPO on ReaxFF
Test C is a demonstration of GloMPO on a real-life
HEB optimization problem; the reparameterization of a
ReaxFF force field.

Optimization task
Within the study of computational chemistry, many
approaches exist to calculate the energy of a chemical
system. These approaches can be broadly divided into
three categories. The first group of methods, known as ab
initio methods, comprises models which are fully based
in theory and can be solved from atomic positions and
physical constants alone. Ab initio methods are generally
the most accurate but involve extremely complex calcula-
tions. Methods which introduce some empirical approxi-
mations, but still follow the Hartree-Fock formalism, are
known as semi-empirical methods. Those that totally
abandon this formalism are known as empirical models.

Empirical and semi-empirical models serve an invalu-
able role in allowing computational chemists to model
temporal and spatial scales unobtainable with ab initio
approaches. By their very nature, these methods intro-
duce empirical parameters into the calculation of the
potential energy surface (PES). The use of such param-
eterized models greatly decreases the cost of the calcula-
tion but creates a problem of identifying the appropriate
parameters to be used.

ReaxFF is an example of an empirical method (some-
times also called a force field) which represents the state-
of-the-art approach to simulating chemical reactions at
scale. ReaxFF was first introduced for hydrocarbons in
Van Duin et al. [65] and, since then, has been success-
fully extended to many different chemical systems [3, 31,
38, 40, 56]. To model a phenomenon as complex as reac-
tion, ReaxFF introduces global parameters, parameters for
chemical elements and pairs, triplets, and quadruplets of
elements, many of which have no physical interpretability.
The total number needed can quickly become unwieldy
with tens or hundreds being required by some models.
There is often very little insight as to which values or range
of values are appropriate. Optimizing ReaxFF force fields
for different chemical systems is a significant hurdle to its
wider application; one which is getting more attention in
recent years [17, 22, 30]. ReaxFF is used in this work as an
archetypal example of a pernicious fitting problem.

Page 12 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

To find appropriate values for all the ReaxFF param-
eters, the computational chemist must create a training
set ( y ∈ R

n where n is the number of items in the training
set) containing energies, forces, bond angles, bond dis-
tances, or any other property they identify as important
for the field to replicate. These values are obtained from
several clusters of atoms calculated using higher level
methods, or from experimental results. Each item of the
training set has a corresponding set of input conditions,
such as atomic positions ( X ∈ R

m×n = [x1, x2, . . . , xn]).
Construction of the training set is itself a non-trivial

problem. The computational chemist must ensure that:
(1) the set sufficiently samples all the areas of interest of
the energy landscape without introducing overly sensi-
tive items; (2) important items are correctly weighted;
and (3) a low evaluation cost is maintained.

Corresponding values to those in the training set
are estimated by the model ( f (x;p) := ŷ ) by select-
ing values for each parameter ( p ∈ R

l ). The deviations
between the training set values and those estimated are
then used to generate a cost function ( E(p) ). The type
of cost function shown in Eq. 3 is the sum of square
differences as it is the most common choice, but other
constructions such as sum of absolute differences have
also been used. The σi values in the cost function repre-
sent a scaling factor to make contributions of different
units comparable. Increased or decreased importance
can be attributed to certain items through the use of
individual weights ( wi).

Finding the best parameters becomes a task of mini-
mizing the cost function. Despite the importance of
this optimization step, it remained, until recently, a
poorly addressed problem. For several years, the default
approach was the sequential one-parameter parabolic
extrapolation (SOPPE) method [38, 64] (also called
SOPPI [17]) which, as the name suggests, tunes param-
eters individually while fixing the other terms. However,
this method does not adequately account for correlation
between terms, and many iterations are needed to find
a suitable parameter set [17, 38]. The method itself is
also impenetrable to non-experts as the order in which
parameters are optimized is critical to obtaining a satis-
factory final set of parameters. Other publications rely
only on the author’s expertise and adjust the field manu-
ally [2].

More recently, however, workers have attempted to
tackle the problem systematically and introduce more
robust optimization algorithms. Larsson et al. [38]

(3)

E(p) =

n
∑

i

[

wi(yi − ŷi)

σi

]2

=

n
∑

i

[

wi(yi − f (xi,p))

σi

]2

applied genetic algorithms with some success to param-
eterize a SiOH force field. Furman et al. [17] introduced
a particle swarm-based technique called RiPSOGM.
Trnka et al. [62] applied the covariance matrix adapta-
tion evolutionary strategy (CMA-ES) to generate force
fields for enzymatic reactions. Hubin et al. [31] and
Iype et al. [32] applied Monte Carlo simulated anneal-
ing methods to optimize their force fields. Hu et al. [30]
and Stepanova et al. [60] also introduced novel tech-
niques using unique cost functions, and Guo et al. [22]
has developed a machine learning-based parameteriza-
tion technique. Finally, Shchygol et al. [58] conducted
a review of several of the aforementioned approaches
and determined that CMA-ES is generally the best per-
forming, but it could still not be relied upon to perform
consistently when repeated on the same problems sev-
eral times.

The two force fields selected for reparameterization in
this work are taken from Shchygol et al. [58] and config-
ured in the same way.

Cobalt This is a force field describing liquid and solid
cobalt, first developed in Labrosse et al. [37]. Twelve
parameters in the model are configurable. The field
is reparameterized against 144 training points which
are all reaction energies.

Disulfide The second force field is taken from Mül-
ler and Hartke [43] and describes disulfide struc-
tures. The reparameterization attempts to optimize
87 parameters against 4875 training points, which
are a combination of atomic charges, geometries, cell
parameters and reaction energies. Given the greater
complexity of the training set, and larger number of
parameters, this force field represents a much greater
challenge than the cobalt one.

The principal difficulty during ReaxFF reparameteriza-
tion efforts is that the cost function is a black-box global
optimization problem. Although an explicit functional
form exists, its evaluation usually contains non-robust
steps [58]. In addition, although evaluating its analytical
derivative may be theoretically possible, in practice exist-
ing ReaxFF implementations do not support them. Most
implementations primarily focus on computational effi-
ciency for molecular dynamics simulations instead [56].
Only recently, derivatives towards ReaxFF parameters
were realized by a re-implementation of ReaxFF from
scratch, making use of automatic differentiation in Ten-
sorFlow. This proof-of-concept was limited to training
data consisting only of single-point energies [22]. Other
frameworks have attempted to redesign the formalism to

Page 13 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

ensure smoother energy surfaces [19]. In general, how-
ever, the ReaxFF cost function is a rugged function with
many discontinuities [11], such that derivatives can be ill-
defined or are of limited use for parameter optimization.

Benchmark test configuration
For the most part the benchmark test was configured as
done in Test A. Random initial guesses were used with
CMA-ES child optimizers configured with a wide initial
search radius. However, given the expense of these opti-
mizations, only ten bouts were repeated per configuration,
and only three configurations were tested on each force
field: (1) strict hunting only, (2) looser hunting only, and (3)
hunting and information sharing using N-CMA. Other set-
tings were selected based on the best results from Test A.

‘Loose’ and ‘strict’ hunting configurations refer to how
aggressively GloMPO shut down child optimizers. A
‘Loose’ hunting style allowed optimizer to remain alive
for longer, well into the focus phase. ‘Strict’ hunting ter-
minated the optimizers as soon as they began to appear
to focus. More details about the exact bout configura-
tions can be found in the optimization results files.

We have chosen to keep the configuration simple and
straight-forward for this demonstration. However, we
have plans to publish more sophisticated GloMPO -man-
aged search strategies in a subsequent paper dedicated to
ReaxFF reparameterization.

Software
GloMPO v2.0.5 was used for the sets using only CMA-ES
optimizers, and v2.1.0 was used for those using nudging-
CMA in Tests A and C. GloMPO v 3.1.1 was used for
Test B. The code is available open source under the GPL-
3.0 license [16].

GloMPO comes bundled with an interface to the new
ParAMS [35] tool in the official release of AMS2020.1.
ParAMS, in turn, interfaces to the ReaxAMS [6, 55, 65]
engine. In ReaxAMS, geometry optimizations are done
with the FIRE optimizer as opposed to the L-BFGS algo-
rithm used by classic ReaxFF. All settings in the ReaxFF
control files are converted to equivalents in ReaxAMS
and FIRE using built-in ParAMS converters.

Results and discussion
Test A: advantages of management
As mentioned previously, a total of 4800 bouts were per-
formed for Test A. We define a bout victory as GloMPO
finding a lower function value than its serial counterpart.
The win percentage is the fraction of bouts GloMPO won
over the 100 bouts in a set.

In the presentation of these results, the success per-
centage of each set is calculated, and these results are

pivoted along the various axes of interest such as conver-
gence, task, number of optimizers etc.

Hunting only
Figure 4a shows the win rates grouped by different con-
figuration settings. To be clear, the data is the same in
each plot, just grouped in different ways. Sets involving
N-CMA have been excluded from this figure for later dis-
cussion so that the effect of supervision and termination
can be studied in isolation. Overall, averaging across the
remaining 27 configurations, GloMPO won on average
62 ± 6% of the time and drew 3% of the bouts, demon-
strating a modest benefit generated by the managed opti-
mization approach.

Figure 4b shows violin plots of the final minima found
by serial and GloMPO optimizations for each of the 2700
bouts in the truncated group of sets as described above.
Again, the data is grouped into different configurations.
Given that each function explores different values, the
minima have been normalized by function type to make
them comparable.

The overall success rate masks several important con-
figurational effects. The number of serial optimizers has
the effect of increasing the overall number of evalua-
tions used, but also provides more opportunities for
serial optimization to identify different minima. Using
an increasing number of serial optimizers shifted the
final minima down for both optimization approaches
due to the higher iteration budget. However, in all cases
GloMPO’s win rate remained mostly unchanged, and
it was always able to produce distributions with lower
values than serial optimization, an effect more pro-
nounced with a higher number of optimizers. In other
words, repeating an optimization over and over again
in a serial manner increases the chances of finding a
better minimum, but GloMPO is more likely to find an
even better one in the same amount of time. Of course,
there are caveats to this. At the lower limit of one or
two serial optimizations, GloMPO would perform
poorly as it distributes its very limited budget between
several optimizers without enough time for any of its
children to sufficiently develop. At the upper limit,
where very many optimizations are repeated, the serial
approach is bound to yield better or the same minimum
as GloMPO, simply by statistical probability. However,
the calculation time required in this scenario makes it
unrealistic.

In terms of the number of GloMPO optimizers alive at
any one time, there are slight decreases in win rate at the
lowest and highest values tested. When ng = 2 there are
too few points of comparison for GloMPO to dynami-
cally reject an optimizer and start another one, i.e., the

Page 14 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

(a)

(b)
Fig. 4  a GloMPO Test A win rates grouped by configuration setting. Trendlines shown in purple, 50% rate marked by black solid line. b Final minima
found by serial and GloMPO optimizations grouped by different configuration settings and shown in violin plots. Minima have been normalized
by function average and standard deviations to make them directly comparable. Mean values shown by corresponding colored solid bars. Sets
involving N-CMA are excluded for separate discussion

Page 15 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

optimization is nearly serial. At the other limit, ng = 10 ,
the iteration budget is used too quickly. However, this
effect is a very small one, and barely noticeable in Fig. 4b.
This suggests that GloMPO may be quite robust to con-
figurational changes. The user can, for example, config-
ure GloMPO based on computational resources without
being overly concerned about the impact on results.

The greatest performance impact comes from the opti-
mizer convergence setting (Fig. 4a, second panel). In
these sets, GloMPO generates its performance improve-
ment by limiting wasted time in bad minima. At lower
convergence tolerances, optimizers naturally spend less
time in any minima, thus limiting GloMPO’s opportu-
nity. The effect, however, is not very pronounced across
the range of fourteen orders of magnitude tested. While
10−20 may seem like an excessively tight tolerance, the
mean value produced by serial optimizers with this toler-
ance is 38% lower than that produced by serial optimiz-
ers with a tolerance of 10−6 . This big difference cannot be
explained by greater numerical precision alone. Although
higher tolerances do force optimizers to search for
longer, the result is not limited to mining more decimals
places. It also provides more opportunities for optimizers
to identify other and better minima. This is not generally
true, but true for the population-based optimizer used
here.

Finally, the distributions and win rates are considered
as a function of optimization task. As mentioned previ-
ously, the functions tested all exhibit different forms of
multimodal behavior. In all cases GloMPO performed
better than serial optimization. In the case of the Shubert
function, tested in only four dimensions, the low dimen-
sionality and periodic degeneracy makes finding the
global minimum relatively easy. However, GloMPO was
still able to produce a better distribution of results.

Information sharing
Optimizer control is the most basic type of manage-
ment of which GloMPO is capable, and it has been
demonstrated to be effective in producing better optimi-
zation results. Further improvements are possible when
GloMPO shares information between its children. The
manager informs its children of the best point ever seen
whenever this is updated. Optimizers may then use this
information in any way they wish. Coupling this GloMPO
ability with Nudging-CMA (see “Child optimizers”) is
particularly powerful as it results in the group of managed
optimizers working collaboratively by sharing their results
and using them as new nudging vectors in real-time.

Figure 5 shows the distribution and win percentages of
the 2100 bouts performed with nudging. The improve-
ment in performance is dramatic. GloMPO is able to win

80 ± 10% of the bouts (0.4% draws), 17% more than the
sets using CMA-ES. The margin of the wins is also much
larger, as evidenced by the great distance in distributions
between serial and GloMPO optimizations.

One feature of particular interest is the strong effect
of the number of GloMPO optimizers. Previously, using
too many or too few optimizers at once in a managed
optimization had a small detrimental effect on perfor-
mance. With information sharing, however, using more
optimizers at once increased the amount of collabora-
tion between them, and increased the GloMPO success
rate to 92% (no draws). The effect of the number of serial
optimizers, however, remains unchanged reinforcing the
robustness of GloMPO.

Included in these results are sets in which serial opti-
mization is configured to run with N-CMA. This is an
impractical way to optimize in general but is tested here
to isolate the effect of GloMPO’s management as far as
possible. In this setup, optimizers are started sequentially
rather than simultaneously. Each subsequent optimizer is
started at the best point seen thus far and nudged accord-
ing to the N-CMA algorithm (Algorithm 2) during its
run. In this configuration GloMPO still achieves a win
rate of 69 ± 7% (0.4% draws), similar to the win rate when
using normal CMA-ES. This is evidence that N-CMA
alone is not responsible for the performance improve-
ment. Rather, the information sharing and collaboration
provided by the GloMPO system plays an important role.
As mentioned, this is not a practical optimization strat-
egy, and if normal serial optimization is compared to
GloMPO using N-CMA the win rate increased to 86 ±
6% (no draws).

The frequency with which the injection is done is abso-
lutely essential to the success of N-CMA itself. Note, the
important distinction between the frequency with which
GloMPO shares information between its children (which
occurs whenever a new best solution is found), and the fre-
quency with which the CMA algorithm injects that param-
eter set into its sampling. Here, we refer to the latter. When
the injection is done too frequently, the optimizer is forced
to converge to the injected point. Conversely, when too
infrequent, the algorithm often becomes stuck in an end-
less exploratory loop and never converges. The range of
frequencies for which the technique works also seems very
narrow; our testing showed injections every 10 iterations to
be effective.

Nudging-CMA is not suited to trap functions like the
Deceptive function presented in “Optimization task”. Con-
sider a simpler example with the same behavior: a function
f with the following minima:

(4)f (1, 1, 1, 1) = 0

Page 16 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

An increasing number of zeros in the parameter vector
decreases the function value but the true global minimum
is located at x = {1, 1, 1, 1} . It is impossible to know a pri-
ori if a function exhibits this type of behavior. However,
in high-dimensional problems, this nudging behavior can

(5)f (0, 1, 1, 1) = 4

(6)f (0, 0, 1, 1) = 3

(7)f (0, 0, 0, 1) = 2

(8)f (0, 0, 0, 0) = 1

nevertheless help find better local minima, even if it does
prevent one from finding the global minimum.

For example, in optimizations of the 20D Schwe-
fel function using normal CMA-ES, optimizers often
converged to points in which 9 to 15 elements equal
420.9687; this is near the global minimum in which all
elements equal 420.9687. Using these vectors as nudg-
ing candidates helps guide optimizers to better points
in which 17 to 20 elements are correctly identified. In
this case the more parameters correctly set, the better
the function value. For N-CMA to work in this way the
function must produce a lower value for every parameter
which is correctly set. This, in turn, relies on a weak sta-
tistical correlation between parameters.

(a)

(b)
Fig. 5  GloMPO win percentages and minima distributions for Test A sets using N-CMA. a GloMPO win rates grouped by different configuration
settings. Trendlines shown in purple, 50% rate marked by black solid line. b Final minima found by serial and GloMPO optimizations grouped by
different configuration settings and shown in violin plots. Minima have been normalized by function average and standard deviations to make
them directly comparable. Mean values shown by corresponding colored solid bars

Page 17 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

Test B: GloMPO as a framework
The aim for Test B was to demonstrate through a sim-
ple example that GloMPO could mimic and outperform
some popular metaheuristics through its framework.
The BH and DA algorithms selected for this were applied
to the LJ optimization problem. The distributions for
the 100 bouts of each configuration are shown in Fig. 6
along with the GloMPO success rate. To make the results

comparable over the multiple dimensions in which they
were run, function values have been shifted and scaled
according to Eq. 9 such that zero is the known global
minimum.

(9)f̃ =
f − fglobal min

|fglobal min|

Fig. 6  Distributions of minima located through serial and GloMPO using dual-annealing and basin-hopping strategies on the Lennard-Jones
problem of varying dimensions. GloMPO win rates included as annotations. Function values shifted to make them comparable such that
f̃ =

f−fglobal min

|fglobal min|

Page 18 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

For d = 30 (10 atoms) and d = 75 (25 atoms), the tests
were repeated with ns = 1 and ns = 4 , i.e., the number
of serial BH or DA optimizers run. The head-to-head
( ns = 1 ) tests directly compare the metaheuristics, but
the GloMPO competitors had the advantages of infor-
mation sharing and supervision demonstrated in Test
A; in these tests GloMPO competitors were run with
four parallel children ( ng = 4 ). The ns = 4 tests were
performed to demonstrate that GloMPO’s performance
could not be solely attributed to the fact that, in the
head-to-head tests, GloMPO effectively had four ran-
dom start locations while the serial competitor had one.

Figure 6 shows very strong performance by the GloMPO
configurations with win rates remaining remarkably high
for both metaheuristics across most tests. For the most
part, GloMPO distributions regularly included the global
minima and had significantly fewer outliers than the serial
configurations. We believe that the improved perfor-
mance compared to Test A can be attributed to the more
sophisticated generators used here.

Analyzing ns = 4 for the DA runs, one can see that the
extra optimizers had the expected benefit of reducing the
mean result and narrowing the distributions somewhat,
but the serial results were still poor. For the BH runs, the
serial results were dramatically improved, and the distri-
butions were almost the same as the GloMPO ones. The
effect of increasing the number of serial BH optimizers
is (almost) the same as running a single optimizer for a
longer period. In that respect the results are unsurprising.
As mentioned in Table 3, the serial optimizers were lim-
ited to 100 local searches, somewhat short compared to
some literature values.

One may be tempted, in that case, to dismiss GloM-
PO’s performance as unimportant since it can be rep-
licated by simply running serial optimizers for longer.
Consideration should, however, be given to the efficiency

with which the evaluation budget is used. We reiterate
that serial and GloMPO share the same limit on func-
tion evaluations, but the final evaluation need not be the
best value ever seen, i.e., the lowest minima can be found
at any point during the optimization. Figure 7 shows the
average and standard deviation of the point in time (the
function evaluation number) at which the minimum was
located for the BH tests across the various configura-
tions and averaged over each of the 100 bouts.

For the ns = 1 tests, the number of function evaluations
needed to find the minimum were comparable between
GloMPO and serial as expected. Serial occasionally
found its best minimum sooner because of the inherent
GloMPO cost of running parallel children; but we recall
the minima it found were much worse. For the ns = 4
tests, serial was able to find comparably good minima
but far later than GloMPO. At higher dimensions it is
unlikely that ns = 4 will be sufficient to remain competi-
tive with GloMPO and this would need to be increased
further, thus increasing the expense of the optimization.

In the case of fast functions, one may be indifferent
to this extra expense, and wish to eschew the GloMPO
overhead for the simplicity of simply running multiple
serial optimizations. It is for this reason that we are par-
ticularly focused on HEB functions, where the difference
in wall time becomes significant.

It is also worth mentioning that, during the BH ns = 1
tests, we noticed that the GloMPO configuration was start-
ing an extremely large number of local optimizations at a sin-
gle minimum towards the end of the optimization because
it had only been configured to stop when it had used the
same number of function evaluations as the serial optimizer.
To avoid repeating this problem (and unnecessarily bloating
results files) the GloMPO competitors for the ns = 4 tests
were given an extra stop criterion: the total number of local
searches was limited to the same number conducted by the
serial tests, i.e., 400. Even with this extra limitation, GloMPO
was able to outperform the serial competitors.

As a final word, we emphasize that the point of these
tests is not to identify a new best optimizer for LJ clusters.
This has been the topic of much literature and focused
attention by others [9, 49, 50, 67]. We seek to demonstrate
that, in general, GloMPO is very customizable, and can
improve the performance of optimizers on a problem,
particularly in the context of novel HEB problems, where
the optimal optimization approach is not clear.

Test C: GloMPO on ReaxFF
The final test we present in this work demonstrates the
utility of GloMPO on a real-life HEB; the reparameteriza-
tion of a ReaxFF force field. We aim to show here some of
the qualitative advantages of the framework.

Fig. 7  Mean and standard deviation of the evaluation number of the
minimum found through serial and GloMPO using the basin-hopping
strategy on the Lennard-Jones problem of varying dimensions

Page 19 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

Timings
The first analysis we conduct is the overhead cost of
GloMPO. Its design intent is for expensive functions, and
having a measure of when it becomes a bottleneck is use-
ful to deciding if a function is appropriate for GloMPO
management or not. We begin by analyzing the behavior
of the ReaxFF cost functions, before timing them within
GloMPO.

The evaluation of the ReaxFF cost function is rela-
tively expensive and quite variable. For context, Fig. 8
shows timings of a single cost function evaluation for the
cobalt and disulfide cost functions evaluated on a single
1.30GHz Intel Core i7-1065G7 CPU. In each scenario,
ten repeats were performed. Two setups are shown. First,
to demonstrate the repeatability of the timing for a given
parameter set, the cost functions were evaluated at the
midpoint of all the bounds. Second, to demonstrate that
the evaluation time is a function of the parameter set, the
cost functions were evaluated ten times each with ran-
domly generated parameter sets.

Both cost functions perform reproducibly and show
little variation when repeatedly evaluating the same
parameter set, however, they show large variability when
evaluating different ones. The difference can be attrib-
uted to certain geometry optimization taking longer
to converge when the parameter set is a poor one. This
can become a serious problem when using a population-
based optimizer like CMA. The optimizer can only pro-
ceed as fast as the slowest evaluation, in cases where the
timings differ substantially, this results in a significant
amount of idle time within the optimizer (if the function
evaluations are evaluated in parallel). Notably, the cobalt
function is much more expensive and variable than the
disulfide one, despite being conceptually simpler. This is
an unfortunate consequence of how the training set is
evaluated within ReaxAMS.

Table 4 quantifies the overhead of using GloMPO in
conjunction with the disulfide and Schwefel functions.
Cobalt was excluded from this test because its variabil-
ity in evaluation time would make it difficult to isolate
GloMPO’s effects. In each scenario GloMPO managed a

single optimizer and let it run for 300 s, the total number
of function evaluations were counted. Each scenario was
repeated five times, and the average and standard devia-
tion is shown. In such cases a single optimizer was run
using a threaded backend. Python’s global interpreter
lock implies that the entire process is run through a sin-
gle core. For comparison, the same optimizer, given the
same task and time limit, was run outside of GloMPO.
The ‘optimizer’ in these tests was not a real optimizer but
rather an infinite loop that continuously evaluated the
same vector. This eliminated optimizer related overhead,
some ReaxFF variability, and ensured there would be
no convergence before the end of the time-limit. These
tests were conducted on a 2.60GHz Intel Xeon E5-2650
v2 CPU, and repeated using GloMPO v2.1 (which was

Fig. 8  Evaluation times of the ReaxFF cost functions using random parameter sets and repeatedly evaluating the same set (ten times each).
Evaluations were performed on a single 1.30GHz Intel Core i7-1065G7 CPU

Table 4  Timing tests on the Disulfide and 20D Schwefel
functions showing the number of function evaluations possible
within a fixed time-limit

Timing tests are not optimizations, but an infinite loop of evaluations of the
same parameter vector. Functions were tested managed and unmanaged for
300 s on a single 2.60 GHz Intel Xeon E5-2650 v2 CPU. Every configuration test
repeated 5 times. GloMPO cost estimates are constructed by assuming the
mean unmanaged evaluation rate to be representative of the intrinsic function
evaluation rate, and further assuming that the balance of the 300s evaluation
time can be attributed solely GloMPO management costs
a GloMPO version number
b Optimizer configured to send every nth evaluation to the manager
c Average and standard deviation over the 5 repeats
d Unmanaged run

Function Ver.a Push Freq.b Function
evaluations
achievedc

GloMPO
cost (ms/
eval)

Disulfided 57 ± 0

 Disulfide v2.1 1 56 ± 0 93.98

 Disulfide v3.1 1 57 ± 0 18.53

Schwefeld 9415963 ± 032073

 Schwefel v2.1 1 60227 ± 154 4.95

10 516510 ± 1614 0.55

 Schwefel v3.1 1 744309 ± 30812 0.37

10 1646672 ± 5801 0.15

Page 20 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

used to produce the N-CMA optimization results) and
GloMPO v3.1 (which was used for Test B).

It is clear that the GloMPO overhead is negligible
in comparison to the ReaxFF costs. For the very fast
Schwefel function, however, only a fraction of the num-
ber of function evaluations can be achieved. Profiling of
GloMPO v3.1 shows the performance bottleneck to be
at the point where data is read off the queue into which
results are fed. We do not consider the performance drop
to be critical. The design intention for GloMPO was for
applications with expensive and difficult functions; faster
ones were tested here only for convenience.

We also note that sending evaluations to the manager
periodically rather than continuously can produce a sub-
stantial speed-up. This is a practical solution in cases
where the user would like to use GloMPO for manage-
ment of the optimization of a fast function and does
not need/want to gather a full evaluation history of the
optimizers.

Degeneracy identification
One qualitative GloMPO advantage is its ability to explore
more minima and, in this way, identify degenerate sets of
solutions. We define degenerate parameter sets as those
which produce similar function values but are not imme-
diately adjacent in parameter space. This is something
that a single optimizer could not do, and something that
GloMPO is able to do more efficiently than sequential
serial optimization. To study this effect, the Shubert func-
tion from Test A, and cobalt cost function were used. As
mentioned earlier, the former has several degenerate and
periodically distributed global minima. Table 5 shows the
maximum, average, and total number of times answers
very near the best minimum were located for the cobalt
error and Shubert test functions across all bouts. This
demonstrates that GloMPO is not only more likely to find
the minimum at all, but also more likely to find it at differ-
ent locations (if such a possibility exists).

Table 5  Maximum, average, and total number of degenerate parameter sets found by cobalt and Shubert functions across all bouts

Degenerates are defined as parameter sets which produce similar function values but are not immediately adjacent in parameter space
a Degenerate range: 1230 < f (x) < 1270

b Degenerate range: −39303 < f (x) < −39000

Function GloMPO Serial

Max. Sum Mean Max. Sum Mean

Cobalta 5 31 3.100 4 18 1.800

Shubertb 4 119 0.595 3 78 0.390

Fig. 9  Scaled parameter set values of five cobalt parameter sets found during a single GloMPO optimization run in Set 1. ( 1236 < f (x) < 1260)

Page 21 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

Figure 9 shows the parameter values for five degenerate
sets found in a single GloMPO optimization run in Set 1.
Note, only the optimized parameters are shown, and they
have been scaled between 0 and 1 for comparison. These
sets produce errors ranging between 1236 to 1260. The
Euclidean distances between these points range from 0.38
to 1.21. It is immediately clear that the parameter sets are
correlated in some way and share many similarities.

One can also mimic a longer GloMPO optimization
by taking all 31 degenerate parameter sets found across
all bouts. Figure 10 shows a PCA analysis performed on
these sets. To confirm that there is not a spurious correla-
tion, the eigenvalues for 100 sets of 31 normally distrib-
uted randomly generated vectors with 12 elements were
also evaluated. The average and standard deviation of
these results are show in the figure for comparison. The
eigenvalues for the cobalt parameter sets clearly demon-
strate a higher degree of correlation than the randomly
generated parameter vectors, which tend to show some
spurious correlations. It can be said that the cost function
is clearly dominated by two or three dimensions; a fact
which can also be seen in Fig. 9. This suggests that there
may be a narrow valley of good solutions connecting these
sets.

One can investigate such relationships to deter-
mine how and why they are connected. Literature sup-
port for this exists; Barcaro et al. [3] found evidence of

degeneracy in their silica force field where two sets of
very different parameters resulted in similar predictive
results. GloMPO’s ability to better identify and group
such minima may be helpful in future force field develop-
ment. This can lead to a reduced number of dimensions
by enforcing relationships between linked parameters. It
can also reveal deficiencies in the training set. For exam-
ple, parameter sets which have the same error value, but
perform very differently when applied to a molecular
dynamics simulation, demonstrate that the training set
has not fully captured some critical property; it may also
be an indication of overfitting.

Overfitting
We should briefly mention the problem of overfit-
ting which is of critical importance when designing
force fields for production runs. Making useful fields
was not our immediate concern here, however, future
authors may be interested in using validation sets in
their work to guard against the problem. GloMPO han-
dles this easily by allowing optimization tasks to return
any extra data they please (like a validation set result).
This information is logged, and available to the hunters.
Thus, a hunter can easily be designed to terminate chil-
dren which show a deterioration in the validation set.
This flexibility of allowing extra information to be pro-
duced by the task, allows GloMPO to make use of any
order parameter to manage the optimization. We also
note that the ReaxFF interface packaged with GloMPO
already includes validation set infrastructure.

Benchmark test results
Due to the computational expense of ReaxFF reparam-
eterizations, only ten bouts could be carried out for these
tests. Speaking in terms of win rates in such a context
would be disingenuous given that a single outlier could
significantly warp the results. In this section, results from
each bout are presented, and GloMPO’s effect is analyzed
qualitatively. For reasons that will be fully explored in
“Challenges of the error function”, optimizers working on
the disulfide reparameterization did not converge natu-
rally. Each bout was stopped to limit further computa-
tional expense after 1.7 × 106 total function evaluations
had been used by all the optimizers combined.

Given this fixed termination condition, bouts for the
disulfide tests are not linked in the way all the other
results in this work are. Figure 11 shows the minima
located by the ten serial and ten GloMPO reparameteri-
zations, each sorted in ascending order. GloMPO pro-
duced better results than serial optimizations in eight of
the ten comparisons.

Fig. 10  Eigenvalues of the covariance matrix of 31 degenerate cobalt
parameter sets found across all GloMPO reparameterizations of this
set. (1236 < f (x) < 1260). For comparison, the averaged eigenvalues
of the covariance matrices of 100 normally distributed randomly
generated 31 × 12 matrices are also included

Page 22 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

Figure 12 shows the minima generated during repa-
rameterizations of the cobalt force field as a function of
evaluations used. GloMPO consistently produces good

quality answers, unlike serial which has a high vari-
ability. This behavior is also insensitive to the evaluation
budget.

Fig. 11  Serial and GloMPO final minima of the ReaxFF error function to reparameterize the disulfide ReaxFF force field (Set 6). Results sorted
ascending

Fig. 12  Serial and GloMPO final minima of the ReaxFF error function to reparameterize the cobalt ReaxFF force field (Set 1) as a function of number
of function evaluations used

Page 23 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

Broadly, GloMPO did improve the quality and quan-
tity of the minima found during ReaxFF reparameteriza-
tions. Its performance, however, was not as decisive as its
effect on Tests A and B. This can be partially attributed to
ReaxFF’s particular properties which make it difficult and
expensive to handle, and partially attributed to the fact
that there was no information sharing or sophisticated
metaheuristic used.

GloMPO nudging with ReaxFF
N-CMA was used on both the cobalt and disulfide error
functions. Unfortunately, optimizers all converged to the
minima to which they were nudged. This was usually the
first minimum encountered by one of the early optimiz-
ers. This failure, however, is more a criticism of N-CMA
as applied to ReaxFF, rather than of information sharing
between children which can be applied in different ways,
and was also shown to be important in Test B. Although
these results were disappointing, investigating the rea-
sons for this proved enlightening.

Evaluations of the Schwefel, Deceptive, Rastrigin and
disulfide error functions were studied. The disulfide error
function has 87 parameters. For direct comparison, the
87-dimension versions of the mathematical test functions
were used here. For each function, the best minimum
was identified. In the case of the test functions, the global
minimum is known. For the disulfide error function, we
define the best minimum as the lowest ever found dur-
ing our optimizations. For each function, 860 vectors
were sampled uniformly from the domain. For ten of
these, one random element in the vector was changed
to the corresponding value in the best minimum vector.
For another ten, two random elements were changed
to the corresponding values in the best minimum vec-
tor, and so on until the final set of ten vectors containing
86 correctly set parameters and one random value. The
function values corresponding to these vectors are plot-
ted versus the number of correctly set vector elements in
Fig. 13.

This figure demonstrates two things quite clearly. First,
as discussed in “Optimization task”, test functions are
often less complex than is sometimes assumed. Second,
nudging cannot work on a function as rugged as ReaxFF.
With between 10 and 20 well-set parameters, the test
functions already show improvements in their function
value. More than 80 parameters must be set correctly to
see dramatic improvements in the disulfide error func-
tion. For the test functions, if certain parameters are cor-
rectly set, they will, on average, produce lower function
values than sets with a fewer number of correctly set
parameters. In other words, this can be informative for
the optimizer, and encourage it to explore regions with
more elements which are correctly set. This is not true

for the ReaxFF error functions. The variability in function
value is orders of magnitude larger than the reduction
induced by setting parameters correctly. Thus, optimizers
will not be able to learn what elements of the parameter
vectors to replicate; nudging would be uninformative.

One can draw several important conclusions from this:

1	 The ReaxFF error function can be characterized
as having very many local minima, with very small
basins of attraction, immediately surrounded by
very high barriers. This makes locating and explor-
ing minima extremely difficult; almost to the point of
being equivalent to a random search.

2	 Single parameter tuning approaches such as SOPPE
can be wildly misleading, particularly without expert
intervention.

3	 The crossover operators in evolutionary algorithms
will be limited in efficiency because they assume that
a partially correct parameter vector has an evolution-
ary advantage, i.e., noticeably lower error. Figure 13
clearly shows this assumption barely holds for the
disulfide training set.

It is unlikely that any optimization algorithm would be
able to efficiently deal with such a pernicious problem.
It would perhaps be more profitable to address the con-
ditioning of the error function itself, before trying to
develop optimization approaches further. One can see
that an improvement trend does exist for the disulfide
function in Fig. 13, but it is masked by a large amount of
noise. If the error function could be better conditioned
by fixing certain parameters or removing certain ele-
ments from the training set, this noise could perhaps be
reduced. This would generally improve the performance
of most optimization algorithms, but conceivably also
unlock the potential of N-CMA.

Challenges of the error function
We close this section with some interesting insights into
the behavior of the cost functions that came from ana-
lyzing the various optimization trajectories saved in
the GloMPO logs. These insights can help future work-
ers reparameterizing ReaxFF fields. Figure 14 shows an
example of some of the optimizers taken from a disulfide
serial optimization. Each demonstrates a difficulty when
handling these types of error functions.

The first issue is high sensitivity to minute changes
in parameter values. In optimizer 10, one sees the opti-
mizer behave strangely, and oscillate between a lower
and higher function value before ultimately settling at
the higher one. Optimizer 1 jumps significantly several
times during its long focus phase. This instability is more
pronounced than it appears since only the best function

Page 24 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

evaluation is recorded per CMA iteration (17 function
evaluations). In other words, to see the spike in function
value, all 17 evaluations must simultaneously evaluate
to the higher level, the rest of the time this behavior is
happening, and effecting the optimizer’s search behavior
without the user’s knowledge. The maximum difference
between parameters at the lower and higher level for

both optimizers is on the order of 10−4 ; parameters range
between 0 and 1.

The parameter vectors generated by the optimizer must
go through several transformations, and a loss of numeri-
cal precision in a file writing step (due to software con-
straints), before finally being tested in the ReaxFF model.
The Python CMA-ES implementation used here also has

Fig. 13  Evaluations of four optimization functions with varying number of parameters correctly set to values which produce the best minimum.
Remaining parameter values are set randomly. Ten repeats are performed for each number of correctly set parameters. Some function values are
shifted vertically by some amount to ensure all values are positive and all functions can be visualized comparatively on log-scales

Page 25 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

its own internal transformations. Such high sensitivity
to small parameter changes can cause spurious behav-
iors, as seen here. This behavior can have several serious
effects: (1) it can misdirect optimizers during their explo-
ration phase, (2) it can prevent convergence from being
achieved if an optimizer is converging towards such a
point, and (3) it creates the need for the user to validate
the stability of the parameter set by repeated evaluations.

The second problem encountered during ReaxFF
reparameterization was the late-stage improvement in
function value after very long periods. The appearance
of these late-stage improvements is rare but occurs fre-
quently enough to work against GloMPO which shuts
down optimizers which appear converged. A plausible
explanation for this is associated with the volatility of the
error function. Local information available to the opti-
mizers is insufficient to direct them to better solutions,
only when randomly sampling outside of a basin can the
optimizer make improvements in the cost function value.
This behavior is dependent on the type of optimizer used,
CMA-ES – which randomly draws its samples from a
multivariate Gaussian distribution—is susceptible to
this, a deterministic algorithm, however, would not be.
Another possibility is that the covariance structure of
the error function changes very slowly in a given area. In
this scenario, CMA would require many iterations before
it has a properly updated covariance matrix and is able
to sample in the correct direction. In this case, similar
behavior would occur in quasi-Newton methods.

Closely linked to this phenomenon is the early-stage
improvements in function value seen shortly after the
optimizer appears to converge. Although occurring for
the same reasons as before, early-stage improvements
could be well handled by making GloMPO’s hunting con-
ditions less strict and allowing the optimizers to remain
alive for longer periods. Big improvements were seen
between the disulfide bouts in Sets 5 and 6, and between
the cobalt bouts in Sets 0 and 1.

All of the suppositions can be validated through visu-
alizations of parameter scans of the error function. Fig-
ure 15 shows a sample of such scans performed around
the parameter set which produced the lowest error for
the disulfide training set. The scans were performed by
evaluating the error function 100 times along each of the
parameters from their lower to upper bound. Of the 87
parameters trained in the set, 8 scans are presented here.
These were selected to demonstrate the different types of
behavior seen while remaining representative.

Figure 15c shows an example of high sensitivity where
the minimum is located very near a steep barrier, Fig-
ure 15a shows the minimum sandwiched between very
steep boundaries on both sides. In either case, small
changes in parameter value result in large jumps in func-
tion value. Fig. 15d, f and h show examples of the error
function oscillating between two or more different func-
tion values, this can mislead the optimizers such that
they oscillate between values and are unable to converge.

Fig. 14  Sample of optimizer trajectories from a serial reparameterization of the disulfide ReaxFF force field. Each optimizer examples some difficulty
with handling ReaxFF error functions

Page 26 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

Figure 15g is an example of how the error function can
mislead the optimizer away from the minimum. Fig-
ure 15b displays little discernible trend for much of its
scan. In such cases, the minimum is only found when the
optimizer randomly samples a better area, thus causing
the late-stage improvements seen in Fig. 14.

Conclusions
This work introduces GloMPO (Globally Managed
Parallel Optimization), a metaheuristic optimization
framework, which seeks to provide a Python applica-
tion through which difficult optimizations can be man-
aged. We believe this is the first such Python framework,
and the first to formalize a forced termination mecha-
nism over a set of optimizations running in parallel. This
approach is demonstrated to quantitatively improve the
quality of minima found through benchmark testing on
several global optimization test functions. On average
GloMPO produces better results than a normal optimi-
zation given the same iteration budget. GloMPO intro-
duces several qualitative advantages such as, providing a
standardized and user-friendly interface to optimization
tasks, and acting as a general workflow manager.

Further, dramatic, improvements are achieved when
GloMPO is configured to share information between
its managed optimizers. Similarly good performance is
seen when GloMPO is configured to use basin-hopping
and dual annealing algorithms through its framework

on Lennard-Jones cluster problems of varying difficulty.
These tests demonstrated how GloMPO can be used
to mimic published metaheuristics, while offering the
chance to mix and match different configurations.

GloMPO also outperforms traditional optimiza-
tion when applied to ReaxFF reparameterizations. The
improvements, however, are less pronounced than when
applied to the mathematical test functions due to the
highly oscillatory and non-robust nature of such func-
tions. To unlock GloMPO’s demonstrated potential, work
must be done to better condition ReaxFF’s error function.
This involves careful study of parameter sensitivities, and
the contributions within the training sets.

A further advantage GloMPO has over traditional opti-
mization is the identification of degenerate parameter
sets; parameter sets which share similar error values but
differ markedly in parameter values. Such sets can help
researchers identify relationships between parameters or
deficiencies in the training set.

GloMPO has proven itself to be a robust framework
that can aid reparameterization, and optimization efforts
when computational expense or function complexity is a
consideration. It certainly warrants more development.
We explicitly note, however, that it is not an appropriate
tool for fast functions. The use of such functions in this
work was borne out of the necessity of producing a large
number of results in a timely manner. In practice, how-
ever, more efficient optimization algorithms exist which

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15  Evaluations of the ReaxFF error function for the disulfide training set against parameter values which were scanned (one at a time) from
their lowest to highest bounds. Other parameters were set to the corresponding values in the reference set, i.e., the parameter set found during
optimization which produced the lowest error. Of the 87 scans, 8 representative ones are presented here for brevity. The purple vertical lines show
the location of the reference value for the parameter

Page 27 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

have been developed in faster languages like FORTRAN
or C/C++. At the opposite limit, however, where the
optimizer is not the bottleneck and the researcher must
carefully consider their optimization choices due to time
constraints, or a pathologically misbehaving function,
GloMPO is an appropriate tool to help automate those
controls.

As an introductory work, we leave many aspects of the
optimization management approach to be studied; we
list several such examples below in the hope of stimu-
lating further research. First, a more rigorous hunt-
ing framework should be developed, one that is able to
perform well regardless of the function being studied.
Second, the configurations used here were all chosen
empirically. It is believed that more rigorous study of
these settings could improve performance even further.
Third, only the simplest selectors and generators were
used in this work, but more nuanced configurations
could also conceivably lead to better results. Finally, a
natural extension of GloMPO seems to be the develop-
ment of an analysis tool which can use the information
gathered by the manager to identify problems or char-
acteristics of the optimization task. This could be of par-
ticular use in determining how to better condition the
ReaxFF error function for example.

Abbreviations
AMS: Amsterdam Modeling Suite; BH: Basin-Hopping; BOF: Bijzonder Onder-
zoeksfonds; CMA-ES: Covariance Matrix Adaptation-Evolutionary Strategy;
DA: Dual Annealing; EA: Evolutionary Algorithm; FIRE: Fast Inertial Relaxation
Method; FWO: Fonds Wetenschappelijk Onderzoek; GloMPO: Globally Man-
aged Parallel Optimization; HEB: High-dimensional, expensive and black-box;
LJ: Lennard-Jones; MOF: Metaheuristic Optimization Framework; N-CMA:
Nudging CMA-ES; ParAMS: Parameterization Tools for AMS; PES: Potential
Energy Surface; ReaxFF: Reactive Force Field; SOPPE/I: Sequential One-Param-
eter Parabolic Extra/Interpolation; RiPSOGM: Rotation-invariant Particle Swarm
Optimization with isotropic Gaussian Mutation; VSC: Vlaams Supercomputer
Centrum.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​022-​00581-z.

 Additional file 1. 1) mathematical details of the benchmark functions, 2)
algorithms for the GloMPO manager, basin-hopping and dual-annealing
strategies, and 3) summaries of optimization results.

Acknowledgements
The authors thank the Flemish Supercomputing Centre (VSC), funded by
Ghent University, FWO and the Flemish Government for use of their computa-
tional resources. They also extend their sincere thanks to the reviewers whose
insightful comments substantially improved this manuscript.

Authors’ contributions
GloMPO was developed, tested and coded by MG. This article was written
by MG. Supervision, revisions, guidance, and advice was provided by TV. All
authors read and approved the final manuscript.

Funding
Funding for the project was provided by the European Union’s Horizon
2020 research and innovation program under grant agreement No 814143.
TV is furthermore supported by the Research Board of Ghent University
(BOF).

 Availability of data and materials
Source code availability: Project name: GloMPO. Project home page: www.​
github.​com/​mfgus​tavo/​glompo. Operating system: Platform independent.
Programming language: Python >3.6. Other requirements: > AMS2020.1 for
ReaxFF interface. License: GPL-3.0. Commercial license needed for AMS2020.
The dataset supporting the conclusions of this article (i.e., the raw benchmark
test results) is available in the Zenodo repository, https://​doi.​org/​10.​5281/​
zenodo.​51015​29. Also included are the ReaxFF ffield files for the lowest error
values found in each run.

Declarations

Competing interests
MG is also employed by Software for Chemistry and Materials which plans to
incorporate GloMPO into its software suite.

Author details
1 Center for Molecular Modeling, Ghent University, Ghent, Belgium. 2 Software
for Chemistry and Materials, De Boelelaan 1083, 1081 HV Amsterdam, The
Netherlands.

Received: 16 July 2021 Accepted: 31 December 2021

References
	1.	 Ali MZ, Awad NH, Reynolds RG (2013) Hybrid niche cultural algorithm for

numerical global optimization. In: 2013 IEEE Congress on Evolutionary
Computation, New York, IEEE. p 309–316, https://​doi.​org/​10.​1109/​CEC.​
2013.​65575​85

	2.	 Bae GT, Aikens CM (2013) Improved ReaxFF force field parameters for
Au-S-C-H systems. J Phys Chem A 117(40):10,438-10,446. https://​doi.​org/​
10.​1021/​jp405​992m

	3.	 Barcaro G, Monti S, Sementa L, Carravetta V (2017) Parametrization of
a reactive force field (ReaxFF) for molecular dynamics simulations of Si
nanoparticles. J Chem Theory Comput 13(8):3854–3861. https://​doi.​org/​
10.​1021/​acs.​jctc.​7b004​45

	4.	 Barrera J, Coello Coello CA (2011) Test function generators for assessing
the performance of PSO algorithms in multimodal optimization. In: Pani-
grahi BK, Shi Y, Lim M (eds) Handbook of Swarm Intelligence: concepts,
Principles and Applications, Springer, Berlin Heidelberg, p 89–117, https://​
doi.​org/​10.​1007/​978-3-​642-​17390-5_4

	5.	 Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ (2009) A survey on
metaheuristics for stochastic combinatorial optimization. Nat Comput
8(2):239–287. https://​doi.​org/​10.​1007/​s11047-​008-​9098-4

	6.	 Chenoweth K, Van Duin ACT, Goddard WA (2008) ReaxFF reactive force
field for molecular dynamics simulations of hydrocarbon oxidation. J Phys
Chem A 112(5):1040–1053. https://​doi.​org/​10.​1021/​jp709​896w

	7.	 Dieterich JM, Hartke B (2012) Empirical review of standard benchmark
functions using evolutionary global optimization. Appl Math 3:1552–
1564. https://​doi.​org/​10.​4236/​am.​2012.​330215

	8.	 Dieterich J, Hartke B (2017) Improved cluster structure optimization:
hybridizing evolutionary algorithms with local heat pulses. Inorganics
5(4):64. https://​doi.​org/​10.​3390/​inorg​anics​50400​64

	9.	 Dittner M, Hartke B (2017) Conquering the hard cases of Lennard-Jones
clusters with simple recipes. Comput Theor Chem 1107:7–13. https://​doi.​
org/​10.​1016/J.​COMPTC.​2016.​09.​032

	10.	 Dittner M, Hartke B (2018) Globally optimal catalytic fields—inverse
design of abstract embeddings for maximum reaction rate acceleration. J
Chem Theory Comput 14(7):3547–3564. https://​doi.​org/​10.​1021/​acs.​jctc.​
8b001​51

https://doi.org/10.1186/s13321-022-00581-z
https://doi.org/10.1186/s13321-022-00581-z
http://www.github.com/mfgustavo/glompo
http://www.github.com/mfgustavo/glompo
https://doi.org/10.5281/zenodo.5101529
https://doi.org/10.5281/zenodo.5101529
https://doi.org/10.1109/CEC.2013.6557585
https://doi.org/10.1109/CEC.2013.6557585
https://doi.org/10.1021/jp405992m
https://doi.org/10.1021/jp405992m
https://doi.org/10.1021/acs.jctc.7b00445
https://doi.org/10.1021/acs.jctc.7b00445
https://doi.org/10.1007/978-3-642-17390-5_4
https://doi.org/10.1007/978-3-642-17390-5_4
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1021/jp709896w
https://doi.org/10.4236/am.2012.330215
https://doi.org/10.3390/inorganics5040064
https://doi.org/10.1016/J.COMPTC.2016.09.032
https://doi.org/10.1016/J.COMPTC.2016.09.032
https://doi.org/10.1021/acs.jctc.8b00151
https://doi.org/10.1021/acs.jctc.8b00151

Page 28 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7

	11.	 Dittner M, Müller J, Aktulga HM, Hartke B (2015) Efficient global optimiza-
tion of reactive force-field parameters. J Comput Chem 36(20):1550–
1561. https://​doi.​org/​10.​1002/​jcc.​23966

	12.	 Dorne R, Voudouris C (2004) HSF: the iOpt’s framework to easily design
metaheuristic methods. In: Metaheuristics: computer decision-making.
Springer, Boston, p 237–256, https://​doi.​org/​10.​1007/​978-1-​4757-​4137-7_​11

	13.	 Dyer D (2010) Watchmaker framework for evolutionary computing.
https://​watch​maker.​uncom​mons.​org/

	14.	 Elyasaf A, Sipper M (2014) Software review: the HeuristicLab framework.
Genet Program Evolvable Mach 15(2):215–218. https://​doi.​org/​10.​1007/​
S10710-​014-​9214-4

	15.	 Fink A, Voß S (2002) Hotframe: a heuristic optimization framework. In:
Voß S, Woodruff DL (eds) Optimization Software Class Libraries. Springer,
Boston, p 81–154. https://​doi.​org/​10.​1007/0-​306-​48126-X_4

	16.	 Freitas Gustavo M (2020) Globally managed parallel optimization. GitHub
repository. https://​github.​com/​mfgus​tavo/​glompo

	17.	 Furman D, Carmeli B, Zeiri Y, Kosloff R (2018) Enhanced particle swarm
optimization algorithm: efficient training of ReaxFF reactive force fields. J
Chem Theory Comput 14(6):3100–3112. https://​doi.​org/​10.​1021/​acs.​jctc.​
7b012​72

	18.	 Gagné C, Parizeau M (2006) Genericity in evolutionary computation soft-
ware tools: principles and case-study. Int J Artif Intell Tools 15(2):173–194.
https://​doi.​org/​10.​1142/​S0218​21300​60026​2X

	19.	 Gale JD, Rohl AL (2003) The general utility lattice program (GULP). Mol
Simul 29(5):291–341. https://​doi.​org/​10.​1080/​08927​02031​00010​4887

	20.	 Glover F (1989) Tabu search—part I. ORSA J Comput 1(3):190–206.
https://​doi.​org/​10.​1287/​IJOC.1.​3.​190

	21.	 Gong Y, Chen W, Zhan Z, Zhang J, Li Y, Zhang Q, Li J (2015) Distributed
evolutionary algorithms and their models: a survey of the state-of-the-
art. Appl Soft Comput 34:286–300. https://​doi.​org/​10.​1016/j.​asoc.​2015.​04.​
061

	22.	 Guo F, Wen YS, Feng SQ, Li XD, Li HS, Cui SX, Zhang ZR, Hu HQ, Zhang
GQ, Cheng XL (2020) Intelligent-ReaxFF: evaluating the reactive force
field parameters with machine learning. Comput Mater Sci 172(109):393.
https://​doi.​org/​10.​1016/j.​comma​tsci.​2019.​109393

	23.	 Hanagandi V, Nikolaou M (1998) A hybrid approach to global optimiza-
tion using a clustering algorithm in a genetic search framework. Comput
Chem Eng 22(12):1913–1925. https://​doi.​org/​10.​1016/​S0098-​1354(98)​
00251-8

	24.	 Hansen N (2011) Injecting external solutions into CMA-ES. arXiv:​1110.​
4181

	25.	 Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on
multimodal test functions. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol 3242 LNCS. Springer, p 282–291, https://​doi.​org/​10.​
1007/​978-3-​540-​30217-9_​29

	26.	 Hansen N, Ostermeier A (2001) Completely derandomized self-adapta-
tion in evolution strategies. In: Evolutionary computation, vol 9(2). MIT
Press, p 159–195, https://​doi.​org/​10.​1162/​10636​56017​50190​398

	27.	 Hansen N, Baudis P, Akimoto Y (2019) CMA-ES, covariance matrix adapta-
tion evolution strategy for non-linear numerical optimization in Python
(v2.7.0). PyPI Project. https://​pypi.​org/​proje​ct/​cma/2.​7.0/

	28.	 Hartke B (1999) Global cluster geometry optimization by a phenotype
algorithm with niches: location of elusive minima, and low-order scaling
with cluster size. J Comput Chem 20:1752–1759. https://doi.org/10.1002/
(SICI)1096-987X(199912)20:16<1752::AID-JCC7>3.0.CO;2-0.

	29.	 Hoffmeister F, Bäck T (1991) Genetic algorithms and evolution strate-
gies: similarities and differences. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol 496 LNCS. Springer, Verlag. p 455–469.
https://​doi.​org/​10.​1007/​BFb00​29787

	30.	 Hu X, Schuster J, Schulz SE (2017) Multiparameter and parallel optimiza-
tion of ReaxFF reactive force field for modeling the atomic layer deposi-
tion of copper. J Phys Chem C 121(50):28,077-28,089. https://​doi.​org/​10.​
1021/​acs.​jpcc.​7b099​48

	31.	 Hubin PO, Jacquemin D, Leherte L, Vercauteren DP (2016) Parameteri-
zation of the ReaxFF reactive force field for a proline-catalyzed aldol
reaction. J Comput Chem 37(29):2564–2572. https://​doi.​org/​10.​1002/​jcc.​
24481

	32.	 Iype E, Hütter M, Jansen APJ, Nedea SV, Rindt CCM (2013) Parameteriza-
tion of a reactive force field using a Monte-Carlo algorithm. J Comput
Chem 34(13):1143–1154. https://​doi.​org/​10.​1002/​jcc.​23246

	33.	 Karaboga D, Basturk B (2007) A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algorithm. J
Global Optim 39(3):459–471. https://​doi.​org/​10.​1007/​s10898-​007-​9149-x

	34.	 Keijzer M, Merelo JJ, Romero G, Schoenauer M (2001) Evolving objects:
a general purpose evolutionary computation library. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics) 2310 LNCS:231–242. https://​
doi.​org/​10.​1007/3-​540-​46033-0_​19

	35.	 Komissarov L, Rüger R, Hellström M, Verstraelen T (2021) ParAMS: param-
eter optimization for atomistic and molecular simulations. J Chem Inf
Model 61(8):3737–3743. https://​doi.​org/​10.​1021/​acs.​jcim.​1c003​33

	36.	 Kronfeld M, Planatscher H, Zell A (2010) The EvA2 optimization frame-
work. Lecture notes in computer science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6073
LNCS, p 247–250, https://​doi.​org/​10.​1007/​978-3-​642-​13800-3_​27

	37.	 Labrosse MR, Johnson JK, Van Duin ACT (2010) Development of a trans-
ferable reactive force field for cobalt. J Phys Chem A 114(18):5855–5861.
https://​doi.​org/​10.​1021/​jp911​867r

	38.	 Larsson HR, Van Duin ACT, Hartke B (2013) Global optimization of
parameters in the reactive force field ReaxFF for SiOH. J Comput Chem
34(25):2178–2189. https://​doi.​org/​10.​1002/​jcc.​23382

	39.	 Liang JJ, Suganthan PN, Deb K (2005) Novel composition test functions
for numerical global optimization. In: 2005 IEEE Swarm Intelligence
Symposium, SIS 2005, p 68–75. https://​doi.​org/​10.​1109/​SIS.​2005.​15016​04

	40.	 Liu Y, Hu J, Hou H, Wang B (2020) Development and application of a
ReaxFF reactive force field for molecular dynamics of perfluorinatedk-
etones thermal decomposition. Chem Phys 538(110):888. https://​doi.​org/​
10.​1016/j.​chemp​hys.​2020.​110888

	41.	 Lukasiewycz M, Glaß M, Reimann F, Teich J (2011) Opt4J: a modular
framework for meta-heuristic optimization. In: Proceedings of the 13th
annual conference on Genetic and evolutionary computation—GECCO
’11, ACM Press, New York, p 1723. https://​doi.​org/​10.​1145/​20015​76.​20018​
08

	42.	 Martí R, Resende MGC, Ribeiro CC (2013) Multi-start methods for combi-
natorial optimization. Eur J Oper Res 226(1):1–8. https://​doi.​org/​10.​1016/j.​
ejor.​2012.​10.​012

	43.	 Müller J, Hartke B (2016) ReaxFF reactive force field for disulfide mecha-
nochemistry, fitted to multireference ab initio data. J Chem Theory
Comput 12(8):3913–3925. https://​doi.​org/​10.​1021/​acs.​jctc.​6b004​61

	44.	 OptTek (2021) OptQuest. https://​www.​opttek.​com/​produ​cts/​optqu​est/
	45.	 Parejo JA, Racero J, Guerrero F, Kwok T, Smith KA (2003) FOM: a framework

for metaheuristic optimization. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 2660 LNCS, p 886–895. https://​doi.​org/​10.​
1007/3-​540-​44864-0_​91

	46.	 Porter B, Xue F (2001) Niche evolution strategy for global optimization.
Proc IEEE Conf Evol Comput ICEC 2:1086–1092. https://​doi.​org/​10.​1109/​
CEC.​2001.​934312

	47.	 Ramírez A, Romero JR, García-Martínez C, Ventura S (2019) JCLEC-MO: a
Java suite for solving many-objective optimization engineering prob-
lems. Eng Appl Artif Intell 81:14–28. https://​doi.​org/​10.​1016/J.​ENGAP​PAI.​
2019.​02.​003

	48.	 Rapin J, Teytaud O (2018) Nevergrad—a gradient-free optimization plat-
form (v0.4.0.post3). GitHub repository. https://​github.​com/​Faceb​ookRe​
search/​Never​grad

	49.	 Rossi G, Ferrando R (2006) Global optimization by excitable walkers.
Chem Phys Lett 423(1–3):17–22. https://​doi.​org/​10.​1016/j.​cplett.​2006.​03.​
003

	50.	 Rossi G, Ferrando R (2009) Searching for low-energy structures of
nanoparticles: a comparison of different methods and algorithms. J Phys
Condens Matter 21(8):084,208. https://​doi.​org/​10.​1088/​0953-​8984/​21/8/​
084208

	51.	 Sala R, Baldanzini N, Pierini M (2017) Global optimization test problems
based on random field composition. Optimization Lett 11:699–713.
https://​doi.​org/​10.​1007/​s11590-​016-​1037-1

https://doi.org/10.1002/jcc.23966
https://doi.org/10.1007/978-1-4757-4137-7_11
https://watchmaker.uncommons.org/
https://doi.org/10.1007/S10710-014-9214-4
https://doi.org/10.1007/S10710-014-9214-4
https://doi.org/10.1007/0-306-48126-X_4
https://github.com/mfgustavo/glompo
https://doi.org/10.1021/acs.jctc.7b01272
https://doi.org/10.1021/acs.jctc.7b01272
https://doi.org/10.1142/S021821300600262X
https://doi.org/10.1080/0892702031000104887
https://doi.org/10.1287/IJOC.1.3.190
https://doi.org/10.1016/j.asoc.2015.04.061
https://doi.org/10.1016/j.asoc.2015.04.061
https://doi.org/10.1016/j.commatsci.2019.109393
https://doi.org/10.1016/S0098-1354(98)00251-8
https://doi.org/10.1016/S0098-1354(98)00251-8
http://arxiv.org/abs/1110.4181
http://arxiv.org/abs/1110.4181
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1007/978-3-540-30217-9_29
https://doi.org/10.1162/106365601750190398
https://pypi.org/project/cma/2.7.0/
https://doi.org/10.1007/BFb0029787
https://doi.org/10.1021/acs.jpcc.7b09948
https://doi.org/10.1021/acs.jpcc.7b09948
https://doi.org/10.1002/jcc.24481
https://doi.org/10.1002/jcc.24481
https://doi.org/10.1002/jcc.23246
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1007/3-540-46033-0_19
https://doi.org/10.1007/3-540-46033-0_19
https://doi.org/10.1021/acs.jcim.1c00333
https://doi.org/10.1007/978-3-642-13800-3_27
https://doi.org/10.1021/jp911867r
https://doi.org/10.1002/jcc.23382
https://doi.org/10.1109/SIS.2005.1501604
https://doi.org/10.1016/j.chemphys.2020.110888
https://doi.org/10.1016/j.chemphys.2020.110888
https://doi.org/10.1145/2001576.2001808
https://doi.org/10.1145/2001576.2001808
https://doi.org/10.1016/j.ejor.2012.10.012
https://doi.org/10.1016/j.ejor.2012.10.012
https://doi.org/10.1021/acs.jctc.6b00461
https://www.opttek.com/products/optquest/
https://doi.org/10.1007/3-540-44864-0_91
https://doi.org/10.1007/3-540-44864-0_91
https://doi.org/10.1109/CEC.2001.934312
https://doi.org/10.1109/CEC.2001.934312
https://doi.org/10.1016/J.ENGAPPAI.2019.02.003
https://doi.org/10.1016/J.ENGAPPAI.2019.02.003
https://github.com/FacebookResearch/Nevergrad
https://github.com/FacebookResearch/Nevergrad
https://doi.org/10.1016/j.cplett.2006.03.003
https://doi.org/10.1016/j.cplett.2006.03.003
https://doi.org/10.1088/0953-8984/21/8/084208
https://doi.org/10.1088/0953-8984/21/8/084208
https://doi.org/10.1007/s11590-016-1037-1

Page 29 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics (2022) 14:7 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	52.	 Saud LJ, Mohamed MJ (2014) Investigating the guidance feature of
searching in the genetic algorithm. Iraqi J Comput Commun Control Syst
Eng 14(1):21–34

	53.	 Schlierkamp-Voosen D, Mühlenbein H (1994) Strategy adaptation by
competing subpopulations. Lecture notes in computer science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 866 LNCS, p 199–208. https://​doi.​org/​10.​1007/3-​540-​
58484-6_​264

	54.	 Schutte JF, Haftka RT, Fregly BJ (2007) Improved global convergence
probability using multiple independent optimizations. Int J Numer Meth
Eng 71(6):678–702. https://​doi.​org/​10.​1002/​nme.​1960

	55.	 SCM, van Duin ACT, Goddard WA, Islam MM, van Schoot H, Trnka T, Yakov-
lev AL (2020) ReaxAMS 2020 (r89496). https://​scm.​com

	56.	 Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, Shin YK, Junkermeier C,
Engel-Herbert R, Janik MJ, Aktulga HM, Verstraelen T, Grama A, Van Duin
ACT (2016) The ReaxFF reactive force-field: development, applications
and future directions. npj Comput Mater 2:15,011. https://​doi.​org/​10.​
1038/​npjco​mpuma​ts.​2015.​11

	57.	 Shan S, Wang GG (2010) Survey of modeling and optimization strategies
to solve high-dimensional design problems with computationally-expen-
sive black-box functions. Struct Multidiscip Optim 41(2):219–241. https://​
doi.​org/​10.​1007/​s00158-​009-​0420-2

	58.	 Shchygol G, Yakovlev A, Trnka T, Van Duin ACT, Verstraelen T (2019) ReaxFF
parameter optimization with Monte-Carlo and evolutionary algorithms:
guidelines and insights. J Chem Theory Comput 15(12):6799–6812.
https://​doi.​org/​10.​1021/​acs.​jctc.​9b007​69

	59.	 Sörensen K (2015) Metaheuristics-the metaphor exposed. Int Trans Oper
Res 22(1):3–18. https://​doi.​org/​10.​1111/​ITOR.​12001

	60.	 Stepanova MM, Shefov KS, Slavyanov SY (2016) Multifactorial global
search algorithm in the problem of optimizing a reactive force field.
Theoretical Math Phys (Russian Federation) 187(1):603–617. https://​doi.​
org/​10.​1134/​S0040​57791​60401​39

	61.	 Swersky K, Snoek J, Adams RP (2014) Freeze-thaw Bayesian optimization.
http://​arxiv.​org/​abs/​1406.​3896

	62.	 Trnka T, Tvaroška I, Koča J (2018) Automated training of ReaxFF reactive
force fields for energetics of enzymatic reactions. J Chem Theory Comput
14(1):291–302. https://​doi.​org/​10.​1021/​acs.​jctc.​7b008​70

	63.	 Tung L (2020) Programming language Python’s popularity: ahead of Java
for first time but still trailing C. https://​zd.​net/​3C17o​lF

	64.	 Van Duin ACT, Baas JMA, Van De Graaf B (1994) Delft molecular mechan-
ics: a new approach to hydrocarbon force fields. Inclusion of a geometry-
dependent charge calculation. J Chem Soc Faraday Trans 90(19):2881–
2895. https://​doi.​org/​10.​1039/​FT994​90028​81

	65.	 Van Duin ACT, Dasgupta S, Lorant F, Goddard WA (2001) ReaxFF: a reac-
tive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409.
https://​doi.​org/​10.​1021/​jp004​368u

	66.	 Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau
D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M,
Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
Carey CJ, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J,
Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro
AH, Pedregosa F, van Mulbregt P, SciPy v1 Contributors (2020) SciPy 1.0:
fundamental algorithms for scientific computing in Python. Nat Methods
17:261–272. https://​doi.​org/​10.​1038/​s41592-​019-​0686-2

	67.	 Wales DJ, Doye JPK (1997) Global optimization by basin-hopping and the
lowest energy structures of Lennard-Jones clusters containing up to 110
atoms. J Phys Chem A 101(28):5111–5116. https://​doi.​org/​10.​1021/​jp970​
984n

	68.	 Wei L, Zhao M (2005) A niche hybrid genetic algorithm for global
optimization of continuous multimodal functions. Appl Math Comput
160(3):649–661. https://​doi.​org/​10.​1016/j.​amc.​2003.​11.​023

	69.	 Xiang Y, Gubian S, Suomela B, Hoeng J (2013) Generalized simulated
annealing for global optimization: the GenSA package. R J 5(1):13–28.
https://​doi.​org/​10.​32614/​rj-​2013-​002

	70.	 Yang M, Omidvar MN, Li C, Li X, Cai Z, Kazimipour B, Yao X (2017) Efficient
resource allocation in cooperative co-evolution for large-scale global
optimization. IEEE Trans Evol Comput 21(4):493–505. https://​doi.​org/​10.​
1109/​TEVC.​2016.​26275​81

	71.	 Yang M, Zhou A, Li C, Guan J, Yan X (2020) CCFR2: a more efficient coop-
erative co-evolutionary framework for large-scale global optimization. Inf
Sci 512:64–79. https://​doi.​org/​10.​1016/j.​ins.​2019.​09.​065

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/3-540-58484-6_264
https://doi.org/10.1007/3-540-58484-6_264
https://doi.org/10.1002/nme.1960
https://scm.com
https://doi.org/10.1038/npjcompumats.2015.11
https://doi.org/10.1038/npjcompumats.2015.11
https://doi.org/10.1007/s00158-009-0420-2
https://doi.org/10.1007/s00158-009-0420-2
https://doi.org/10.1021/acs.jctc.9b00769
https://doi.org/10.1111/ITOR.12001
https://doi.org/10.1134/S0040577916040139
https://doi.org/10.1134/S0040577916040139
http://arxiv.org/abs/1406.3896
https://doi.org/10.1021/acs.jctc.7b00870
https://zd.net/3C17olF
https://doi.org/10.1039/FT9949002881
https://doi.org/10.1021/jp004368u
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/jp970984n
https://doi.org/10.1016/j.amc.2003.11.023
https://doi.org/10.32614/rj-2013-002
https://doi.org/10.1109/TEVC.2016.2627581
https://doi.org/10.1109/TEVC.2016.2627581
https://doi.org/10.1016/j.ins.2019.09.065

	GloMPO (Globally Managed Parallel Optimization): a tool for expensive, black-box optimizations, application to ReaxFF reparameterizations
	Abstract
	Introduction
	High-dimensional, expensive, black-box optimization
	Metaheuristics
	Optimizer supervision
	Globally managed parallel optimization

	Implementation
	General structure
	Python implementation

	Methods
	Benchmark test procedure
	Hunters
	Test A: advantages of management
	Optimization task
	Child optimizers
	Other settings
	Benchmark test configurations

	Test B: GloMPO as a framework
	Child optimizers
	Test strategy
	Optimization task

	Test C: GloMPO on ReaxFF
	Optimization task
	Benchmark test configuration

	Software

	Results and discussion
	Test A: advantages of management
	Hunting only
	Information sharing

	Test B: GloMPO as a framework
	Test C: GloMPO on ReaxFF
	Timings
	Degeneracy identification
	Overfitting
	Benchmark test results
	GloMPO nudging with ReaxFF
	Challenges of the error function

	Conclusions
	Acknowledgements
	References

