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Abstract 

In this work we explore the properties which make many real-life global optimization problems extremely difficult 
to handle, and some of the common techniques used in literature to address them. We then introduce a general 
optimization management tool called GloMPO (Globally Managed Parallel Optimization) to help address some of the 
challenges faced by practitioners. GloMPO manages and shares information between traditional optimization algo-
rithms run in parallel. We hope that GloMPO will be a flexible framework which allows for customization and hybridi-
zation of various optimization ideas, while also providing a substitute for human interventions and decisions which 
are a common feature of optimization processes of hard problems. GloMPO is shown to produce lower minima than 
traditional optimization approaches on global optimization test functions, the Lennard-Jones cluster problem, and 
ReaxFF reparameterizations. The novel feature of forced optimizer termination was shown to find better minima than 
normal optimization. GloMPO is also shown to provide qualitative benefits such a identifying degenerate minima, and 
providing a standardized interface and workflow manager.
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Introduction
High‑dimensional, expensive, black‑box optimization
In this work, we are particularly interested in tackling the 
hardest of global optimization challenges: high-dimen-
sional, expensive, and black-box (HEB) problems [57]. 
Many real-life applications fall into this class. Black-box 
optimization problems—ones for which no gradient 
information is available—are generally regarded as some 
of the most difficult to handle. This is because optimiz-
ers can easily be led astray by rough surfaces, and many 
more function evaluations are typically needed for the 
optimizer to learn about the structure of the problem. 

High  dimensionality also demands increased function 
evaluations, but a high evaluation expense makes this 
infeasible. The consequence of this complexity is a signif-
icant reduction in the number of optimization algorithms 
which can be used. Numerous options exist to tackle 
problems with one or two of these difficulties, but rarely 
are all three addressed simultaneously [57].

A particular reason for our interest in HEB problems is 
the practical challenges they introduce to the optimiza-
tion process. A practitioner faced with a new optimiza-
tion challenge must select an algorithm, and then values 
for its hyper-parameters. These choices are made based 
on some intuition of the problem, but are often shown to 
be wrong as the task is investigated further. Often, opti-
mizations become iterative procedures to refine algo-
rithms and their settings, and to verify the quality and 

Open Access

Journal of Cheminformatics

*Correspondence:  toon.verstraelen@ugent.be
1 Center for Molecular Modeling, Ghent University, Ghent, Belgium
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-1832-8413
http://orcid.org/0000-0001-9288-5608
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00581-z&domain=pdf


Page 2 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics            (2022) 14:7 

reproducibility of the minima found. When the task is 
both difficult and expensive, this procedure can become 
time-consuming and difficult.

Metaheuristics
Tackling these hard problems can only be done with 
metaheuristics, i.e., the use of a two-tier algorithm. A 
metaheuristic is any optimization method in which an 
upper algorithm selects the starting conditions for a 
lower one. The lower level is typically any local search 
procedure and is called a heuristic. The heuristic may 
provide a suitable solution to the problem but can-
not be used alone since it will most likely locate a local 
rather than global minimum [5]. The use of metaheuris-
tics decouples, and attempts to balance, exploration and 
exploitation.

Metaheuristics is a very broad term. The litera-
ture on it is extensive and varied, and the term is often 
not used explicitly. Nevertheless, most optimizers are 
metaheuristics. This includes solution-based methods 
(which iteratively improve a single incumbent solution), 
and population-based ones (like evolutionary algorithms 
(EA) which improve a group of solutions). A similar, but 
less broad, term which is also encountered is ‘multi-start’ 
optimization which refers to the repeated application of 
local optimization steps [42].

It is not always obvious that an algorithm applies this 
two-level structure. For example, the simulated annealing 
technique uses a ‘temperature’ parameter to govern how 
far the optimizer can look from the incumbent solution. 
The temperature is decreased during the optimization to 
slowly focus the optimizer on a minimum; this represents 
the upper method. The lower-level heuristic is simply a 
function evaluation, but in the Python SciPy [66] imple-
mentation of an annealing strategy this has been replaced 
with a local search algorithm.

Another simple example is the efficient and popu-
lar basin-hopping (BH) strategy of Wales and Doye [67] 
which couples a specially configured sampling strategy 
with local optimizations.

Both of the above examples use Monte  Carlo steps 
as the metaheuristic to govern local search locations. 
An important advance to this came in the form of tabu 
search [20] which introduced ‘memory’—the concept of 
previously visited points influencing subsequent steps.

In the case of population-based metaheuristics the 
upper algorithm is the crossover and mutation of indi-
viduals, and the heuristic is evaluations or local searches. 
Many novel ideas within the realm of EAs have stretched 
the study of metaheuristics further. One such technique 
is the use of subpopulations. This term has been used 
to refer to the splitting of a problem into a collection of 
subproblems that are solved simultaneously [70, 71], or, 

more commonly, the use of multiple populations to solve 
a problem [10, 50, 53]. The latter technique is used to 
maintain diversity, and some algorithms allow for infor-
mation to be shared between the populations through 
a process called ‘migration’ [1, 21]. ‘Niching’ is another 
technique used by EAs to maintain population diversity 
by ensuring the population has at most one member (or 
a small number) in any given niche. Niching may be as 
simple as discretizing the search space [43, 58] or intro-
ducing some other measure of difference between indi-
viduals [28, 46, 68]; the latter choice overlaps with the 
concept of ‘order parameters’.

Order parameters are some measure, other than the 
inputs and outputs of the optimization problem, by 
which solutions are ranked or choices are made by the 
meta-algorithm. These are perhaps the most powerful 
aids to solving HEB problems because they introduce 
extra problem-specific information to the optimizer. 
If not selected carefully, they run the risk of biasing the 
algorithm, and are generally not transferable to other 
types of problems. However, the use of order param-
eter has been repeatedly shown to dramatically improve 
performance by maintaining diversity and reducing the 
enormous search space of high-dimensional problems [7, 
9, 10, 28].

One technique which is ubiquitous in literature is 
‘hybridization’—the act of coupling existing lower- and 
upper-level algorithms in new ways [7, 23, 49, 50, 68]. 
Over the years, a plethora of exploration and exploitation 
algorithms have been applied in every combination. Typ-
ically, they introduce some improvement, however, the 
number of publications of this type has generated some 
criticism [59]. We make the observation that, unfortu-
nately, many algorithms are published without making an 
implementation available.

Optimizer supervision
In more recent years, in order to take advantage of the 
advances in computational infrastructure, efforts have 
been made to parallelize optimization algorithms. The 
result is usually a parallel exploitation step (which simul-
taneously explores several basins), coupled to a single 
serial global exploration step. In this way, full parallelism 
is not achieved. A particularly interesting extension of 
these efforts, which seems to have gotten little attention 
in the literature, is the concept of using the metaheuristic 
to monitor the performance of the lower-level heuristic.

Schutte et  al. [54] tackled the problems of efficient 
parallelism, and convergence to local minima, in a novel 
multi-start approach. In their work, optimizers are char-
acterized as exploring for a certain number of iterations, 
and then converging to a point and spending many itera-
tions fully focused on that area. Their algorithm assumes 
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that instances of an optimizer will all spend about the 
same number of iterations exploring a domain before 
focusing. Thus, a single optimizer is run, its ‘explora-
tion’ time measured, and then several new optimizers are 
spawned and allowed to run for the same period of time. 
Through this approach the authors were ultimately able to 
prove that multiple independent optimizations improved 
the probability of global convergence. Rather than setting 
the maximum number of function evaluations a priori, 
Swersky et al. [61] devised a Bayesian-based termination 
condition to stop optimizers which had reached conver-
gence. Although the idea shows promise, we found this 
approach to be overly complex and computationally 
expensive during our own testing. Yang et al. [70, 71], in 
their extended CCFR and CCFR2 frameworks, dynami-
cally allocated computational resources to their subpopu-
lations based on performance.

From these works we note, generally, that optimizers 
tend to converge to local minima, and spend several hun-
dred iterations exploring regions that should perhaps be 
abandoned because a more promising region exists else-
where. If multiple optimizers were run simultaneously, 
and compared in real-time, these convergences to poor 
minima could be immediately identified and stopped.

Globally managed parallel optimization
Bearing in mind the difficulties associated with HEB 
optimization, and adapting elements from the previously 
mentioned sources, we present a novel optimization 
framework called GloMPO (Globally Managed Parallel 
Optimization). GloMPO is a customizable metaheuristic 
that explicitly splits the algorithm levels. The upper level 
functions as an optimization manager that launches, con-
trols, and supervises parallel executions of the lower-level 
heuristic. The manager is designed to stand atop and 
outside of traditional optimization algorithms, providing 
real-time supervision, control, and information sharing.

Unique to GloMPO is its ability to act as a supervisor 
and to terminate its subordinates early. This guarantees 
the efficient use of both computational resources, and the 
evaluation budget, while simultaneously increasing the 
probability of finding better solutions through its multi-
start approach as proven in Schutte et al. [54].

GloMPO allows one to deal with many of the problems 
mentioned above, while incorporating many of the best 
ideas: 

1	 By running optimizations in parallel (potentially 
using different algorithms and settings), allowing for 
automated termination, and providing opportunities 
for real-time interventions by users, GloMPO deals 
with a lot of the practical optimization challenges 

mentioned at the end of “High dimensional, expen-
sive, black-box optimization”.

2	 We believe GloMPO is the first metaheuristic to for-
malize an active supervision and termination mecha-
nism in the way it is implemented here.

3	 GloMPO is constructed in an object orientated 
manner such that all decision criteria can be pieced 
together with simple code stubs. This makes the 
framework totally customizable, and allows users to 
hybridize and mix new optimizations together.

4	 As GloMPO grows, its library of components will 
increase. This allows code to be reused efficiently. 
Many algorithms in literature are not published 
with a publicly available implementation. This lim-
its their usage to those users who are prepared to 
reimplement the idea themselves. A framework like 
GloMPO allows these algorithms to be mimicked 
with existing code.

5	 The GloMPO manager provides a centralized and 
efficient logging mechanism of points visited by its 
children. This allows its decision-making machinery 
to make memory-based choices like tabu search.

6	 GloMPO runs optimizations totally independently 
and in parallel which maximizes computational 
resource efficiency.

7	 GloMPO allows functions to return any extra infor-
mation they like. These can be used as order param-
eters by decision criteria to further guide the search.

In this way GloMPO touches on all of the most impor-
tant points mentioned in the literature review above in a 
single user-friendly framework.

Several metaheuristic optimization frameworks (MOF) 
have already been developed. Implementations were 
found in both Java [12, 13, 36, 41, 47] and C++/C# [14, 
15, 18, 34]. Unfortunately, some of these existing frame-
works are commercial [44] and others are no longer in 
development [12, 13, 15, 45]. With few exceptions, the 
MOFs we located are strictly evolutionary algorithms 
which allow users to mix and match operators and selec-
tion functions.

We did not find a MOF implemented in Python. We 
believe this would be a valuable contribution given the 
language’s current and growing popularity in the data sci-
ence space [63]. GloMPO is also more versatile than most 
implementations since it is not limited to EAs, and, as far 
as we can tell, is unique in presenting a supervision struc-
ture with forced termination of parallel searches.

The remainder of this paper is dedicated to demon-
strating GloMPO’s abilities on a variety of optimiza-
tion problems. Some algorithmic details are included 
in “Implementation” and “Methods” documents the 
benchmarking procedure. “Results and discussion” 
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details three tests performed through the framework 
to demonstrate: (1) the advantages of its management 
abilities, (2) its ability to mimic other optimization 
algorithms by piecing together various strategies, and 
(3) its assistance on real-life optimization problems in 
which human interventions are often needed to guide 
the process.

Implementation
General structure
GloMPO is a metaheuristic with two algorithmic levels, 
and one is subordinate to the other. A schematic of the 
GloMPO structure is given in Fig. 1. The upper level or 
‘manager’ is responsible for monitoring, controlling, and 
sharing information between structures of the lower level 
(the ‘children’). The children are traditional optimization 
algorithms which attempt to locate a minimum of the 
cost function. Depending on one’s strategy, children can 
be global or local search algorithms, i.e., GloMPO can 
work as a metaheuristic, or act at an even higher level.

The rational for the supervision and control mecha-
nism is best demonstrated by illustration. An example of 
typical optimizer behavior is given Fig. 2a. This shows the 
objective function evaluations of ten CMA-ES optimizers 
over time. The optimizers work independently, but were 
all given the same optimization function; 20D Schwefel 
(see “Optimization task”). Each optimizer was started 
at a random location. For clarity, the x-axis refers to the 
cumulative number of function calls used by all opti-
mizers. In the case of CMA-ES, each optimizer iteration 
involves several function evaluations, only the best evalu-
ation of each iteration is shown in the figure.

Most optimizers spend some period of time search-
ing quite globally, and not substantially improving their 
incumbent best solution. At some point, the optimizer 
will rapidly converge towards a single value, shrink 
its exploration radius, and spend a large number of Fig. 1  Schematic representation of the GloMPO premise

(a) (b)
Fig. 2  Comparison of (a) unmanaged and (b) GloMPO managed optimization of 20D Schwefel function using CMA-ES optimizers
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iterations on marginal improvements until a desired tol-
erance is achieved. It is very rare for substantial progress 
to be made once an optimizer is within this ‘focus’ phase. 
It follows then, that focusing can represent a significant 
waste of function evaluations if another child is simulta-
neously exploring a better region. Some optimizers never 
reach this focus phase and continue to explore without 
convergence for hundreds of iterations.

Both of these behaviors represent inefficiencies in the 
use of function evaluations. By monitoring such optimiz-
ers in real-time, the manager is able to step-in and ter-
minate poor performing children, and start new ones in 
their stead. This replaces human interventions which are 
typically required during HEB optimizations.

Figure  2b shows an example of what managed opti-
mizer trajectories look like. In this figure, the same 20D 
Schwefel function was used. The number of function 
evaluations was limited to the same number used by the 
unmanaged optimizers. Within this same limit, more 
optimizers are started, more minima are identified, and 
optimizers are only allowed to focus on the deepest of 
them. As a consequence, a lower overall minimum is 
found.

In this way GloMPO aims to use the available iteration 
budget more efficiently. A second important attribute of 
this approach is the ability to use information from ear-
lier children to improve the starting position and con-
figurations of future children. In fact, information can 
be shared between optimizers during the optimization. 
The benefits of these are explored fully in “Results and 
discussion”.

Python implementation
GloMPO has been implemented in an open-source 
Python package [16]. For ease of use, and to allow for 
customization by users of all programming strengths, a 
plug-and-play approach has been chosen for each deci-
sion criterion. In this way an optimization can be config-
ured by a collection of small, easy-to-write code stubs. 
GloMPO comes bundled with several of the most com-
mon and basic classes, but the user is free to implement 
their own. Figure  3 shows a simplified workflow of the 
manager control loop, with the user-customizable code 
stubs colored in green. In total, the five classes allow for a 
great level of customization and can be used to construct 
sophisticated workflows. They can also be extremely 
straightforward for ease of use. The choice depends 
entirely on the difficulty of the task, and the user’s insight. 
Each of the five types of customizable classes are detailed 
below: 

Fig. 3  Simplified decision tree of GloMPO manager loop with 
customizable modular code stubs colored in green
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Optimizers GloMPO can use any existing optimi-
zation algorithm as one of its children. Wrappers 
already exist for CMA-ES [26] and Facebook’s 
Nevergrad [48], which is itself a wrapper around 
most common algorithms. This gives GloMPO 
greater flexibility than some MOFs in literature 
which are limited to EAs.

Selectors Selectors chose which optimizer to start 
from an available pool of configurations. GloMPO 
is able to manage different types of children at 
once. This allows the manager to start a certain 
type of algorithm early in the optimization and 
replace them with another type later. The selection 
can also be based on feedback from other children.

Generators These functions provide starting loca-
tions for new optimizers. One type of generator 
could provide random points, while another might 
base its choice on promising regions of the domain 
seen by existing children, a third might use a Latin 
hypercube sampling approach to ensure that the 
children are adequately distributed throughout the 
space. Generators act as the upper algorithm of 
metaheuristics.

Hunters The decision criteria for terminating an 
optimizer early are provided by hunter objects. 
These are simple code stubs which GloMPO allows 
to be combined together using logical statements 
to create sophisticated and specialized termina-
tion conditions. For example, one might begin an 
optimization with one type of optimizer to quickly 
identify basins of interest, terminate these, and 
then begin a second type of local optimizer to 
explore these basins and terminate them if they 
converge to higher values than another child.

Checkers Similar to hunters, these conditions can 
also be combined to control when the manager as a 
whole stops its routine. This can be based on com-
putation time, number of iterations used, reaching 
a target function value, converging a number of 
children, or any other such condition.

GloMPO supports parallelism at two levels: (1) the 
manager parallelizes the optimizers, (2) the optimizers 
may parallelize the function evaluations (if the optimizer 
algorithm supports this). Both levels can be threaded 
and run as processes. The choice depends on the evalu-
ation speed of the objective function as well as inter-
faces to external software (i.e., whether they are thread/
multiprocess-safe or not). GloMPO does not currently 
support parallelism over multiple nodes, however, it is a 

feature we are interested in implementing in the future. 
For a more detailed explanation of the implementation, 
please see the Additional file 1: Section S2.

Methods
As a framework, GloMPO’s scope is enormous. There is 
much to uncover in terms of optimal configurations, how 
to make hunting more intelligent, which tasks or opti-
mizers are suited to management, etc. As an introductory 
paper, we have limited ourselves to three goals, and leave 
other questions unanswered for further investigation.

In the following sections, we will demonstrate the 
following: 

A	 Active supervision and forced termination (hunting) 
of parallel optimizers can make use of an evaluation 
budget more efficiently and locate better minima;

B	 GloMPO can be used to mimic and outperform 
other metaheuristic algorithms;

C	 GloMPO can aid users in finding better minima for 
extremely hard, real-life, minimization problems; 
namely, the reparameterization of ReaxFF force 
fields.

Benchmark test procedure
To demonstrate GloMPO’s effect, in each of the three tests 
above, it must be shown that GloMPO is statistically more 
likely to find lower minima. This is done by comparing 
the final results of unmanaged and managed optimization 
schemes when given the same task and evaluation budget, 
and repeated several times. In the context of this work, we 
refer to the unmanaged optimizations as ‘serial’ optimiza-
tions. This is in reference to: (1) metaheuristic algorithms, 
like basin-hopping and dual annealing (DA), which seri-
ally apply local optimizations, and (2) the typical approach 
when dealing with difficult problems of repeating optimi-
zations several times to offset the risk of converging to a 
local minimum.

Algorithm 1 details the benchmark test devised to fairly 
compare serial and GloMPO optimizations. In it ns opti-
mizers are run serially, and each is allowed to converge 
naturally without limits on time or number of iterations 
used; in other words, they search until a function tolerance 
or other internal convergence criteria is reached. The sum 
of all function evaluations used by each serial optimizer 
(serial_evals_used) forms the budget for the GloMPO 
competitor. A serial/GloMPO pair linked in this way 
through the evaluation budget is referred to here as a ‘bout’. 
GloMPO is given the same optimization task ( f (·) ) and 
uses the same child optimizers as in the serial run, in this 
way any difference in performance is directly attributable 
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to the management aspects of GloMPO. GloMPO man-
ages ng optimizers at once; each of these may be shut down 
and replaced at any time, but the total alive at any one 
moment is ng . The winner of the bout is the optimization 
approach which achieves the lowest answer. A total of nb 
bouts are performed for statistical significance.

We note that the results of the benchmark test are a func-
tion of the hunting paradigm and the optimizer(s) used. 
Of course, these two aspects are also further correlated; 
hunting works on optimizers differently, and their com-
bined behavior depends on the minimization task. It would 
be beyond the scope of a single paper to investigate every 
possible combination of optimizer, task, hunter, etc. Thus, 
these results should not be inferred to apply generally, but 
rather to be indicative of the advantages that are possible. 

Algorithm 1 Benchmark test algorithm
1: procedure BenchmarkTest(nb, ns, ng , f(·))
2: nglompo wins ← 0

3: for i in {1, 2, 3, . . . , nb} do

4: nserial evals used ← 0

5: fserial best ← ∞
6: for j in {1, 2, 3, . . . , ns} do

7: fmin, nevals ← NormalOptimization(f(·))
8: nserial evals used ← nserial evals used + nevals

9: if fmin < fserial best then

10: fserial best ← fmin

11: end if

12: end for

13: fGloMPO best ← GloMPO(f(·), nserial evals used, ng)

14: if fGloMPO best < fserial best then

15: nglompo wins ← nglompo wins + 1

16: end if

17: end for

18: return nglompo wins

19: end procedure

Hunters
Four hunter conditions, detailed in Table  1, are used in 
this work. The basic hunter template was:

The parameter values used for the hunters depended on 
the function being optimized, and were selected ad hoc. 
The ValueAnnealing and ParameterDistance 
hunters were not used in tests using N-CMA (see “Child 
optimizers”). 

The hunting configurations used in this paper represent 
common-sense empirical termination condition which 
one might employ when optimizing a new function about 
which little is known. In our testing we found that the 
hunter configuration was very important to GloMPO’s 
performance. The development of a more rigorous hunt-
ing framework would be an important next step in devel-
opment. Readers can consult the results files for detailed 
hunting configurations.

Test A: advantages of management
The purpose of the first experiment, Test A, is to inves-
tigate the effect of GloMPO’s supervision and control 
machinery. These tests aim to demonstrate that: 

1	 Forced termination of optimizers results in a more 
efficient use of an evaluation budget; and,

2	 Information sharing between optimizers through the 
manager increases performance.

(EvaluationsUnmoving

and ValueAnnealing)

or BestUnmoving

or ParameterDistance.

Table 1  Description of the types of hunters used in the benchmark tests

Hunter class Description

EvaluationsUnmoving (call, tol) Calculates the standard deviation of the last calls function evaluations. Returns true if this 
value is smaller than tol times the last function evaluation. Used to terminate an optimizer 
when its function evaluations are unchanging, i.e., when it has reached its focus phase.

ValueAnnealing (med_kill_chance) The probability of returning a kill signal follows an exponential distribution based on the dif-
ference in function value between two optimizers. The chance of killing an optimizer twice 
as large as the lowest optimizer is med_kill_chance. Optimizers which are exploring 
values which are close to one another are less likely to be killed than those far apart. Used as 
a way to save optimizers which are competitive and may become the best.

BestUnmoving (calls, tol) Kills an optimizer if it has not improved its best ever function evaluation by at least tol 
percent in calls. Used to terminate optimizers that explore for too long without focusing 
on to a point.

ParameterDistance (relative_tolerance) Kills optimizers which are exploring points in the domain which are separated by a distance 
less than relative_tolerance times the maximum distance between any two points 
within the bounded domain. Used to terminate optimizers in the same basin.
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Optimization task
Test A explores various global optimization test func-
tions. Such functions are typically very quick to evaluate, 
and thus allow us to test a wide array of configurations to 
demonstrate that the management effect is robust. They 
have, however, been rightly criticized in the past for not 
providing a sufficient challenge for state-of-the-art opti-
mizers [4, 8, 39, 51] and creating the incorrect impression 
that difficulty scales with dimensionality.

In the scope of this test, however, we are not interested 
in identifying a GloMPO configuration that competes 
with state-of-the-art optimizers and consistently finds 
the global minimum. The aim here is to demonstrate 
that an optimizer which struggles on a particular func-
tion, can benefit from GloMPO’s management aspects 
of information sharing and early termination. As will be 
clear from the results, the CMA-ES optimizer used here 
did struggle with these functions and did not find the 
global minimum with any regularity. As a first step in 
our work, we did not judge adjustments to the traditional 
functions to be necessary.

Four test functions are used in this work. Brief descrip-
tions are provided below, and the interested reader can 
consult the Supplementary Information for visualizations 
and the explicit functions (Additional file 1: Section S1): 

Rastrigin The Rastrigin function [29] is globally uni-
modal around the minimum, but the surface is highly 
oscillatory. Population-based optimizers can be 
expected to rapidly near the origin (where the global 
minimum is located), but then get trapped in the 
nearby local minima when their search radii begin to 
shrink. Tested in 66 dimensions.

Deceptive The Type III Deceptive test function [52] 
is particularly challenging because there is a very 
small basin of attraction around the global mini-
mum. The region immediately surrounding it is 
sloped away from the global minimum to various 
local minima. The location of the global minimum, 
which is customizable in the function, was placed 
randomly each time it is used in this work. Tested in 
20 dimensions.

Schwefel The Schwefel function [33] has several fea-
tures making it particularly difficult to optimize: (1) 
unlike the Rastrigin test function, it does not have a 
global gradient leading optimizers to the minimum; 
(2) it has a much larger search domain; (3) the global 
minimum is hidden near the boundaries where the 
function becomes more oscillatory; and (4) the sec-
ond best solution is located very far away from the 
best. Tested in 20 dimensions.

Shubert The Shubert function is highly multimodal 
with degenerate and periodically distributed global 
minima (i.e., equal function values at different loca-
tions in parameter space). Very good second-best 
solutions immediately surround each global mini-
mum entrapping many optimizers. It is investigated 
here to test the ability of different optimization strat-
egies to identify multiple degenerate global minima. 
Tested in 4 dimensions.

Child optimizers
CMA-ES is selected as the child algorithm in these tests. 
This is a popular global optimization strategy, suited to a 
wide array of problems. A particularly appealing property 
of this algorithm is that it has only a few hyper-param-
eters, with sensible defaults for most as functions of the 
dimensionality of the problem [25]. A further consider-
ation was the fact that this optimizer proved most effi-
cient in locating good minima in the reparameterization 
of ReaxFF force fields in the work of Shchygol et al. [58]; 
this optimization challenge appears in “Test C: GloMPO 
on ReaxFF”.

The implementation used is adapted from the Python 
package available at Hansen et al. [27]. Most settings are 
unchanged from the defaults set in this package. The ini-
tial setting for the parameter governing how far the algo-
rithm can explore from the incumbent solution ( σ0 ) is set 
to half the distance between the upper and lower bound 
(Eq.  1)—which is the same in all dimensions for the 
test functions. σ0 is purposely broad to make the initial 
starting location uninformative, and force a very global 
search.

To investigate GloMPO’s ability to share information 
between its children, CMA-ES is used in a second way 
to make it compatible with receiving outside input. It has 
been previously shown that injecting good solutions into 
CMA-ES’s population can be very effective at improving 
its performance [24]. We extend this further using the 
GloMPO framework to dynamically share good itera-
tions between CMA-ES instances.

Algorithm 2 shows the architecture of this approach. A 
parameter vector producing a very low function value is 
seeded to the algorithm, and every several iterations this 
candidate is forced into the next iteration’s sampled pop-
ulation. Practically, an incumbent solution is seeded by 
selecting the best ever solution from previous optimizers 
as the starting location. If an improved solution is found, 
the injected candidate is updated. The result is that the 

(1)σ0 =
xmax − xmin

2
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algorithm can still maintain a wide search radius but is 
unable to move its mean too far away from the good solu-
tion. This injection is a form of elitism, but, in practice, 
does not result in the same loss of exploration that true 
elitism does. The injections act to nudge the algorithm’s 
mean back towards the good solution, hence the name 
given hereafter: nudging-CMA or N-CMA. In a man-
aged setting, the updates to the injected candidate may 
also be obtained from external sources i.e., other children 
GloMPO is managing. 

Algorithm 2 Nudging-CMA algorithm
1: procedure NCMAAlgo(xincumbent, iinject frequency, f(·))
2: i ← 0

3: while not CMAAlgo.converged do

4: i ← i+ 1

5: if i mod iinject frequency is 0 then

6: CMAAlgo.ForceIntoSamplePop(xincumbent)

7: end if

8: X ← CMAAlgo.SamplePop

9: fsampled pop ← f(X)

10: CMAAlgo.Update(fsampled pop)

11: for fi in fsampled pop do

12: if fi < f(xincumbent) then

13: xincumbent ← Xi

14: end if

15: end for

16: if is glompo managed then

17: xinject, finject ← GloMPO.ReceiveMessage

18: if finject < f(xincumbent) then

19: xincumbent ← xinject

20: end if

21: end if

22: end while

23: return xincumbent, f(xincumbent)

24: end procedure

Other settings
Four other settings are also investigated. They include 
the number of optimizers used by serial and GloMPO 

optimizations, and their convergence settings, which in 
this case refers to the function tolerance. These are pri-
marily explored to illustrate GloMPO’s robustness to 
such changes.

Two generators are used. This refers to the starting 
guesses for the optimizers. Generally, this was selected by 
uniformly sampling from the parameter space. In most 
of the configurations using N-CMA, the optimizers were 
started at the manager’s incumbent solution, and this 
also forms the initial nudging candidate. The alternatives 
for all these settings are given in Table 2.

Benchmark test configurations
Testing every combination of the above settings would 
not be practical. The configurations actually selected for 
testing are built up methodically. We believe them to be 
generally representative, but, of course, we are only able 
to test a small fraction of all possible configurations, 
which are themselves a random subset of an infinite set 
of possible configurations. In total, 48 combinations are 
tested in 4800 bouts. Each set of bouts is listed in Addi-
tional file 1: Table S1 of the Supplementary Information 
and given a set identification number.

The first configuration tested is Set 12 which uses the 
Schwefel function (objectively the hardest function as 
outlined in “Optimization task”), default CMA-ES set-
tings, random start locations, and ten and four serial 
and GloMPO optimizers respectively; the latter two set-
tings chosen ad hoc. From this configuration, tests are 
performed by changing the number of serial optimiz-
ers, and then the number of GloMPO optimizers are 
changed. Returning to Set 12, the convergence settings 
are changed. The other test functions are then tested at 
the highest and lowest convergence settings. The N-CMA 
tests follow the same pattern of changing only one setting 
at a time, but only the Schwefel function is studied.

It should be emphasized that the choices we made for 
Test A with regards to the generator, large initial opti-
mizer search radius etc. are purposely not very sophisti-
cated ones. The aim here is to isolate the effect of hunting 
as far as possible, so that differences in performance can 
be solely attributed to that effect. We did not attempt 

Table 2  Summary of other configuration settings

Property Tested values Comments

Convergence 10-6 , 10-11 and 10-20 Refers to the tolfun convergence setting of the individual CMA optimizer instances

Max Serial Jobs ( ns) 5, 10, 15 and 20 Number of unmanaged optimizers run in a single bout

Max GloMPO Jobs ( ng) 2, 4, 7 and 10 Number of managed optimizers alive at any moment during a GloMPO managed bout. Note, this is not 
the total number of optimizers used as GloMPO may replace any of its children at any time

Generator Random, Incumbent Random: uniformly randomly selected point in parameter space. Incumbent: best point seen thus far by 
the manager
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to tune GloMPO configurations to become competitive 
with state-of-the-art optimizers on these functions.

Test B: GloMPO as a framework
The aim of Test B is to demonstrate a more sophisticated 
GloMPO configuration. It shows that GloMPO is flex-
ible enough to mimic popular and efficient metaheuristic 
algorithms and, combined with the advantages of man-
agement demonstrated in Test A, produces better results 
than the unmanaged counterpart.

Child optimizers
For this test we make use of two very popular, and effec-
tive metaheuristic algorithms; dual annealing (DA) [69] 
and basin-hopping (BH) [67]. We have selected these par-
tially because they have been implemented in Python’s 
SciPy library [66]. This package is extremely popular, 
and a first port of call for non-experts looking for certain 
mathematical routines (like optimizations).

These routines may no longer be state-of-the-art, but 
they remain popular because their algorithms are quite 
intuitive. Also, in the context of this test, we are most 
interested in demonstrating how such metaheuristic 
algorithms can work within the GloMPO framework.

Algorithm details for the two routines used here are 
included in Additional file 1: Section S3. Broadly speaking, 
both algorithms use a Monte Carlo step-taking algorithm as 
their metaheuristic and launch periodic local search algo-
rithms. BH launches local searches every iteration, while 
DA does so more infrequently based on internal decision 

criteria. Unless otherwise stated in Table 3, the default set-
tings of the SciPy v1.2.1 implementation are used. 

Test strategy
The “Benchmark test procedure“ is configured for Test B 
as follows: 

1	 The ‘serial’ run used a single execution of the BH or 
DA routines as implemented in SciPy. A single repeat 
( ns = 1 ) was used since the aim of these experiments 
was to investigate a metaheuristic strategy’s perfor-
mance with and without GloMPO management and 
information sharing. To verify that GloMPO’s per-
formance cannot be attributed solely to multiple start 
locations, some tests are repeated with ns = 4.

2	 The GloMPO run splits the metaheuristic into their 
‘upper’ and ‘lower’ routines. The upper algorithm is 
a Monte Carlo-based step procedure, and the lower 
one is a BFGS local optimization. The upper routine 
is used as a ‘generator’ to identify starting locations 
for child optimizers (the lower routine).

3	 As before, both competitors are limited to the same 
number of function evaluations.

4	 The GloMPO generators are designed to match their 
parent algorithm as closely as possible, but some 
modifications were required to support GloMPO’s 
asynchronous parallel behavior since both upper-
level algorithms are sequential. Details have been 
provided in Additional file 1: Section S2.

Table 3  Customized settings used for the basin-hopping and dual annealing algorithms

SciPy parameter name Description Value Comment

Basin-Hopping

 T Temperature 0.8 Changed to match the values used by Wales and Doye 
[67]

 stepsize Maximum step in each dimension that can be taken 
by the random displacement

1

 niter Number of Monte Carlo steps and local optimizations 100 5000 was used by Wales and Doye [67] but their results 
show that global minima were often found in the first 
few hundred iterations. Since we are not interested 
in actually obtaining the global minimum, we select 
a value of 100 to make the cost of the optimizations 
bearable. This is sufficiently long in lower dimensions, 
to locate the global minimum, and sufficiently long 
in higher dimensions to make a fair comparison of 
performance

Dual Annealing

 initial_temp Initial temperature 50000 Governs the maximum step the random displacement 
can take. Increased from the default to make the opti-
mizer more exploratory since early test work showed a 
propensity to get stuck in the first minimum located

 restart_temp_ratio Ratio between current and initial temperatures which 
resets the temperature to the initial value

0.01 Increased from default to actually trigger new restarts 
and force the optimizer to explore other minima
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5	 Tests were repeated in 30, 75, 150 and 225 dimen-
sions. Full configuration details are given in Addi-
tional file 1: Table S2.

The distinction between serial and GloMPO configura-
tions is that the GloMPO configuration runs local opti-
mizations in parallel, has the power to terminate them 
early, and centralizes information from multiple sources 
into a single generator step.

Optimization task
In this test, we choose to make use of a more challeng-
ing real-life global optimization challenge: the optimal 
arrangement of particles in a Lennard-Jones (LJ) energy 
potential [67]. This has the advantages of being harder 
than the previous test functions, but still cheap enough to 
be optimized many times.

Whenever two atoms approach one another in space, 
they experience an attractive force pulling them together. 
As the distance between them decreases, so does the 
force of attraction. At a critical distance, the atoms begin 
feeling a repulsive force which typically increases very 
steeply. The simplest way to describe this interaction is 
through the use of the Lennard-Jones energy potential 
in Eq.  2 where E is the potential energy of the particle 
arrangement, X is the matrix of d-dimensional Cartesian 
coordinates describing the location of N particles, ǫ is the 
depth of the energy minimum, σ governs the location of 
the minimum, and rij is the Euclidean distance between 
atoms i and j.

The optimization problem is to find the arrangement 
of particles which minimizes the energy in Eq.  2. The 
dimensionality of the optimization problem is Nd, thus, 
the 30-, 75-, 150- and 225-dimension problems opti-
mized here had 10, 25, 50 and 75 atoms, respectively.

The Lennard-Jones potential energy surface is char-
acterized by many minima located near steep and non-
finite regions. Due to the fact that a translation, rotation 
or permutation of particles will not change the energy 
value, the surface has very many degenerate global and 
local minima. In our tests, as is commonly done in litera-
ture, we have set the parameters ǫ = σ = 1.

The BFGS local optimization strategy was given access 
to analytical derivatives; thus, this is not an HEB prob-
lem since it is not black-box. We make this choice to give 
the serial optimizers the best performance possible. If 
the derivative function were not made available to the 
local optimizer, a numerical approximation would be 

(2)E(X) = 4ǫ
∑

i<j

[

(

σ

rij
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−
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σ
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)6
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constructed by finite differences. This increases the eval-
uation cost and produces longer optimizer tails which 
GloMPO could potentially terminate. In our studies, not 
using analytical gradients improved GloMPO’s perfor-
mance in comparison to the serial optimizer even further 
than the results included here.

Test C: GloMPO on ReaxFF
Test C is a demonstration of GloMPO on a real-life 
HEB optimization problem; the reparameterization of a 
ReaxFF force field.

Optimization task
Within the study of computational chemistry, many 
approaches exist to calculate the energy of a chemical 
system. These approaches can be broadly divided into 
three categories. The first group of methods, known as ab 
initio methods, comprises models which are fully based 
in theory and can be solved from atomic positions and 
physical constants alone. Ab initio methods are generally 
the most accurate but involve extremely complex calcula-
tions. Methods which introduce some empirical approxi-
mations, but still follow the Hartree-Fock formalism, are 
known as semi-empirical methods. Those that totally 
abandon this formalism are known as empirical models.

Empirical and semi-empirical models serve an invalu-
able role in allowing computational chemists to model 
temporal and spatial scales unobtainable with ab initio 
approaches. By their very nature, these methods intro-
duce empirical parameters into the calculation of the 
potential energy surface (PES). The use of such param-
eterized models greatly decreases the cost of the calcula-
tion but creates a problem of identifying the appropriate 
parameters to be used.

ReaxFF is an example of an empirical method (some-
times also called a force field) which represents the state-
of-the-art approach to simulating chemical reactions at 
scale. ReaxFF was first introduced for hydrocarbons in 
Van Duin et  al. [65] and, since then, has been success-
fully extended to many different chemical systems [3, 31, 
38, 40, 56]. To model a phenomenon as complex as reac-
tion, ReaxFF introduces global parameters, parameters for 
chemical elements and pairs, triplets, and quadruplets of 
elements, many of which have no physical interpretability. 
The total number needed can quickly become unwieldy 
with tens or hundreds being required by some models. 
There is often very little insight as to which values or range 
of values are appropriate. Optimizing ReaxFF force fields 
for different chemical systems is a significant hurdle to its 
wider application; one which is getting more attention in 
recent years [17, 22, 30]. ReaxFF is used in this work as an 
archetypal example of a pernicious fitting problem.



Page 12 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics            (2022) 14:7 

To find appropriate values for all the ReaxFF param-
eters, the computational chemist must create a training 
set ( y ∈ R

n where n is the number of items in the training 
set) containing energies, forces, bond angles, bond dis-
tances, or any other property they identify as important 
for the field to replicate. These values are obtained from 
several clusters of atoms calculated using higher level 
methods, or from experimental results. Each item of the 
training set has a corresponding set of input conditions, 
such as atomic positions ( X ∈ R

m×n = [x1, x2, . . . , xn]).
Construction of the training set is itself a non-trivial 

problem. The computational chemist must ensure that: 
(1) the set sufficiently samples all the areas of interest of 
the energy landscape without introducing overly  sensi-
tive items; (2) important items are correctly weighted; 
and (3) a low evaluation cost is maintained.

Corresponding values to those in the training set 
are estimated by the model ( f (x;p) := ŷ ) by select-
ing values for each parameter ( p ∈ R

l ). The deviations 
between the training set values and those estimated are 
then used to generate a cost function ( E(p) ). The type 
of cost function shown in Eq.  3 is the sum of square 
differences as it is the most common choice, but other 
constructions such as sum of absolute differences have 
also been used. The σi values in the cost function repre-
sent a scaling factor to make contributions of different 
units comparable. Increased or decreased importance 
can be attributed to certain items through the use of 
individual weights ( wi).

Finding the best parameters becomes a task of mini-
mizing the cost function. Despite the importance of 
this optimization step, it remained, until recently, a 
poorly addressed problem. For several years, the default 
approach was the sequential one-parameter parabolic 
extrapolation (SOPPE) method [38, 64] (also called 
SOPPI [17]) which, as the name suggests, tunes param-
eters individually while fixing the other terms. However, 
this method does not adequately account for correlation 
between terms, and many iterations are needed to find 
a suitable parameter set [17, 38]. The method itself is 
also impenetrable to non-experts as the order in which 
parameters are optimized is critical to obtaining a satis-
factory final set of parameters. Other publications rely 
only on the author’s expertise and adjust the field manu-
ally [2].

More recently, however, workers have attempted to 
tackle the problem systematically and introduce more 
robust optimization algorithms. Larsson et  al. [38] 

(3)
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applied genetic algorithms with some success to param-
eterize a SiOH force field. Furman et al. [17] introduced 
a particle swarm-based technique called RiPSOGM. 
Trnka et al. [62] applied the covariance matrix adapta-
tion evolutionary strategy (CMA-ES) to generate force 
fields for enzymatic reactions. Hubin et  al. [31] and 
Iype et al. [32] applied Monte Carlo simulated anneal-
ing methods to optimize their force fields. Hu et al. [30] 
and Stepanova et  al. [60] also introduced novel tech-
niques using unique cost functions, and Guo et al. [22] 
has developed a machine learning-based parameteriza-
tion technique. Finally, Shchygol et  al. [58] conducted 
a review of several of the aforementioned approaches 
and determined that CMA-ES is generally the best per-
forming, but it could still not be relied upon to perform 
consistently when repeated on the same problems sev-
eral times.

The two force fields selected for reparameterization in 
this work are taken from Shchygol et al. [58] and config-
ured in the same way. 

Cobalt This is a force field describing liquid and solid 
cobalt, first developed in Labrosse et al. [37]. Twelve 
parameters in the model are configurable. The field 
is reparameterized against 144 training points which 
are all reaction energies.

Disulfide The second force field is taken from Mül-
ler and Hartke [43] and describes disulfide struc-
tures. The reparameterization attempts to optimize 
87 parameters against 4875 training points, which 
are a combination of atomic charges, geometries, cell 
parameters and reaction energies. Given the greater 
complexity of the training set, and larger number of 
parameters, this force field represents a much greater 
challenge than the cobalt one.

The principal difficulty during ReaxFF reparameteriza-
tion efforts is that the cost function is a black-box global 
optimization problem. Although an explicit functional 
form exists, its evaluation usually contains non-robust 
steps [58]. In addition, although evaluating its analytical 
derivative may be theoretically possible, in practice exist-
ing ReaxFF implementations do not support them. Most 
implementations primarily focus on computational effi-
ciency for molecular dynamics simulations instead [56]. 
Only recently, derivatives towards ReaxFF parameters 
were realized by a re-implementation of ReaxFF from 
scratch, making use of automatic differentiation in Ten-
sorFlow. This proof-of-concept was limited to training 
data consisting only of single-point energies [22]. Other 
frameworks have attempted to redesign the formalism to 
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ensure smoother energy surfaces [19]. In general, how-
ever, the ReaxFF cost function is a rugged function with 
many discontinuities [11], such that derivatives can be ill-
defined or are of limited use for parameter optimization.

Benchmark test configuration
For the most part the benchmark test was configured as 
done in Test A. Random initial guesses were used with 
CMA-ES child optimizers configured with a wide initial 
search radius. However, given the expense of these opti-
mizations, only ten bouts were repeated per configuration, 
and only three configurations were tested on each force 
field: (1) strict hunting only, (2) looser hunting only, and (3) 
hunting and information sharing using N-CMA. Other set-
tings were selected based on the best results from Test A.

‘Loose’ and ‘strict’ hunting configurations refer to how 
aggressively GloMPO shut  down child optimizers. A 
‘Loose’ hunting style allowed optimizer to remain alive 
for longer, well into the focus phase. ‘Strict’ hunting ter-
minated the optimizers as soon as they began to appear 
to focus. More details about the exact bout configura-
tions can be found in the optimization results files.

We have chosen to keep the configuration simple and 
straight-forward for this demonstration. However, we 
have plans to publish more sophisticated GloMPO -man-
aged search strategies in a subsequent paper dedicated to 
ReaxFF reparameterization.

Software
GloMPO v2.0.5 was used for the sets using only CMA-ES 
optimizers, and v2.1.0 was used for those using nudging-
CMA in Tests A and C. GloMPO v 3.1.1 was used for 
Test B. The code is available open source under the GPL-
3.0 license [16].

GloMPO comes bundled with an interface to the new 
ParAMS [35] tool in the official release of AMS2020.1. 
ParAMS, in turn, interfaces to the ReaxAMS [6, 55, 65] 
engine. In ReaxAMS, geometry optimizations are done 
with the FIRE optimizer as opposed to the L-BFGS algo-
rithm used by classic ReaxFF. All settings in the ReaxFF 
control files are converted to equivalents in ReaxAMS 
and FIRE using built-in ParAMS converters.

Results and discussion
Test A: advantages of management
As mentioned previously, a total of 4800 bouts were per-
formed for Test A. We define a bout victory as GloMPO 
finding a lower function value than its serial counterpart. 
The win percentage is the fraction of bouts GloMPO won 
over the 100 bouts in a set.

In the presentation of these results, the success per-
centage of each set is calculated, and these results are 

pivoted along the various axes of interest such as conver-
gence, task, number of optimizers etc.

Hunting only
Figure 4a shows the win rates grouped by different con-
figuration settings. To be clear, the data is the same in 
each plot, just grouped in different ways. Sets involving 
N-CMA have been excluded from this figure for later dis-
cussion so that the effect of supervision and termination 
can be studied in isolation. Overall, averaging across the 
remaining 27 configurations, GloMPO won on average 
62 ± 6% of the time and drew 3% of the bouts, demon-
strating a modest benefit generated by the managed opti-
mization approach.

Figure 4b shows violin plots of the final minima found 
by serial and GloMPO optimizations for each of the 2700 
bouts in the truncated group of sets as described above. 
Again, the data is grouped into different configurations. 
Given that each function explores different values, the 
minima have been normalized by function type to make 
them comparable.

The overall success rate masks several important con-
figurational effects. The number of serial optimizers has 
the effect of increasing the overall number of evalua-
tions used, but also provides more opportunities for 
serial optimization to identify different minima. Using 
an increasing number of serial optimizers shifted the 
final minima down for both optimization approaches 
due to the higher iteration budget. However, in all cases 
GloMPO’s win rate remained mostly unchanged, and 
it was always able to produce distributions with lower 
values than serial optimization, an effect more pro-
nounced with a higher number of optimizers. In other 
words, repeating an optimization over and over again 
in a serial manner increases the chances of finding a 
better minimum, but GloMPO is more likely to find an 
even better one in the same amount of time. Of course, 
there are caveats to this. At the lower limit of one or 
two serial optimizations, GloMPO would perform 
poorly as it distributes its very limited budget between 
several optimizers without enough time for any of its 
children to sufficiently develop. At the upper limit, 
where very many optimizations are repeated, the serial 
approach is bound to yield better or the same minimum 
as GloMPO, simply by statistical probability. However, 
the calculation time required in this scenario makes it 
unrealistic.

In terms of the number of GloMPO optimizers alive at 
any one time, there are slight decreases in win rate at the 
lowest and highest values tested. When ng = 2 there are 
too few points of comparison for GloMPO to dynami-
cally reject an optimizer and start another one, i.e., the 
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(a)

(b)
Fig. 4  a GloMPO Test A win rates grouped by configuration setting. Trendlines shown in purple, 50% rate marked by black solid line. b Final minima 
found by serial and GloMPO optimizations grouped by different configuration settings and shown in violin plots. Minima have been normalized 
by function average and standard deviations to make them directly comparable. Mean values shown by corresponding colored solid bars. Sets 
involving N-CMA are excluded for separate discussion
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optimization is nearly serial. At the other limit, ng = 10 , 
the iteration budget is used too quickly. However, this 
effect is a very small one, and barely noticeable in Fig. 4b. 
This suggests that GloMPO may be quite robust to con-
figurational changes. The user can, for example, config-
ure GloMPO based on computational resources without 
being overly concerned about the impact on results.

The greatest performance impact comes from the opti-
mizer convergence setting (Fig.  4a, second panel). In 
these sets, GloMPO generates its performance improve-
ment by limiting wasted time in bad minima. At lower 
convergence tolerances, optimizers naturally spend less 
time in any minima, thus limiting GloMPO’s opportu-
nity. The effect, however, is not very pronounced across 
the range of fourteen orders of magnitude tested. While 
10−20 may seem like an excessively tight tolerance, the 
mean value produced by serial optimizers with this toler-
ance is 38% lower than that produced by serial optimiz-
ers with a tolerance of 10−6 . This big difference cannot be 
explained by greater numerical precision alone. Although 
higher tolerances do force optimizers to search for 
longer, the result is not limited to mining more decimals 
places. It also provides more opportunities for optimizers 
to identify other and better minima. This is not generally 
true, but true for the population-based optimizer used 
here.

Finally, the distributions and win rates are considered 
as a function of optimization task. As mentioned previ-
ously, the functions tested all exhibit different forms of 
multimodal behavior. In all cases GloMPO performed 
better than serial optimization. In the case of the Shubert 
function, tested in only four dimensions, the low dimen-
sionality and periodic degeneracy makes finding the 
global minimum relatively easy. However, GloMPO was 
still able to produce a better distribution of results.

Information sharing
Optimizer control is the most basic type of manage-
ment of which GloMPO is capable, and it has been 
demonstrated to be effective in producing better optimi-
zation results. Further improvements are possible when 
GloMPO shares information between its children. The 
manager informs its children of the best point ever seen 
whenever this is updated. Optimizers may then use this 
information in any way they wish. Coupling this GloMPO 
ability with Nudging-CMA (see “Child optimizers”) is 
particularly powerful as it results in the group of managed 
optimizers working collaboratively by sharing their results 
and using them as new nudging vectors in real-time.

Figure 5 shows the distribution and win percentages of 
the 2100 bouts performed with nudging. The improve-
ment in performance is dramatic. GloMPO is able to win 

80 ± 10% of the bouts (0.4% draws), 17% more than the 
sets using CMA-ES. The margin of the wins is also much 
larger, as evidenced by the great distance in distributions 
between serial and GloMPO optimizations.

One feature of particular interest is the strong effect 
of the number of GloMPO optimizers. Previously, using 
too many or too few optimizers at once in a managed 
optimization had a small detrimental effect on perfor-
mance. With information sharing, however, using more 
optimizers at once increased the amount of collabora-
tion between them, and increased the GloMPO success 
rate to 92% (no draws). The effect of the number of serial 
optimizers, however, remains unchanged reinforcing the 
robustness of GloMPO.

Included in these results are sets in which serial opti-
mization is configured to run with N-CMA. This is an 
impractical way to optimize in general but is tested here 
to isolate the effect of GloMPO’s management as far as 
possible. In this setup, optimizers are started sequentially 
rather than simultaneously. Each subsequent optimizer is 
started at the best point seen thus far and nudged accord-
ing to the N-CMA algorithm (Algorithm  2) during its 
run. In this configuration GloMPO still achieves a win 
rate of 69 ± 7% (0.4% draws), similar to the win rate when 
using normal CMA-ES. This is evidence that N-CMA 
alone is not responsible for the performance improve-
ment. Rather, the information sharing and collaboration 
provided by the GloMPO system plays an important role. 
As mentioned, this is not a practical optimization strat-
egy, and if normal serial optimization is compared to 
GloMPO using N-CMA the win rate increased to 86 ± 
6% (no draws).

The frequency with which the injection is done is abso-
lutely essential to the success of N-CMA itself. Note, the 
important distinction between the frequency with which 
GloMPO shares information between its children (which 
occurs whenever a new best solution is found), and the fre-
quency with which the CMA algorithm injects that param-
eter set into its sampling. Here, we refer to the latter. When 
the injection is done too frequently, the optimizer is forced 
to converge to the injected point. Conversely, when too 
infrequent, the algorithm often becomes stuck in an end-
less exploratory loop and never converges. The range of 
frequencies for which the technique works also seems very 
narrow; our testing showed injections every 10 iterations to 
be effective.

Nudging-CMA is not suited to trap functions like the 
Deceptive function presented in “Optimization task”. Con-
sider a simpler example with the same behavior: a function 
f with the following minima:

(4)f (1, 1, 1, 1) = 0
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An increasing number of zeros in the parameter vector 
decreases the function value but the true global minimum 
is located at x = {1, 1, 1, 1} . It is impossible to know a pri-
ori if a function exhibits this type of behavior. However, 
in high-dimensional problems, this nudging behavior can 

(5)f (0, 1, 1, 1) = 4

(6)f (0, 0, 1, 1) = 3

(7)f (0, 0, 0, 1) = 2

(8)f (0, 0, 0, 0) = 1

nevertheless help find better local minima, even if it does 
prevent one from finding the global minimum.

For example, in optimizations of the 20D Schwe-
fel function using normal CMA-ES, optimizers often 
converged to points in which 9 to 15 elements equal 
420.9687; this is near the global minimum in which all 
elements equal 420.9687. Using these vectors as nudg-
ing candidates helps guide optimizers to better points 
in which 17 to 20 elements are correctly identified. In 
this case the more parameters correctly set, the better 
the function value. For N-CMA to work in this way the 
function must produce a lower value for every parameter 
which is correctly set. This, in turn, relies on a weak sta-
tistical correlation between parameters.

(a)

(b)
Fig. 5  GloMPO win percentages and minima distributions for Test A sets using N-CMA. a GloMPO win rates grouped by different configuration 
settings. Trendlines shown in purple, 50% rate marked by black solid line. b Final minima found by serial and GloMPO optimizations grouped by 
different configuration settings and shown in violin plots. Minima have been normalized by function average and standard deviations to make 
them directly comparable. Mean values shown by corresponding colored solid bars
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Test B: GloMPO as a framework
The aim for Test B was to demonstrate through a sim-
ple example that GloMPO could mimic and outperform 
some popular metaheuristics through its framework. 
The BH and DA algorithms selected for this were applied 
to the LJ optimization problem. The distributions for 
the 100 bouts of each configuration are shown in Fig. 6 
along with the GloMPO success rate. To make the results 

comparable over the multiple dimensions in which they 
were run, function values have been shifted and scaled 
according to Eq.  9 such that zero is the known global 
minimum.

(9)f̃ =
f − fglobal min

|fglobal min|

Fig. 6  Distributions of minima located through serial and GloMPO using dual-annealing and basin-hopping strategies on the Lennard-Jones 
problem of varying dimensions. GloMPO win rates included as annotations. Function values shifted to make them comparable such that 
f̃ =

f−fglobal min

|fglobal min|
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For d = 30 (10 atoms) and d = 75 (25 atoms), the tests 
were repeated with ns = 1 and ns = 4 , i.e., the number 
of serial BH or DA optimizers run. The head-to-head 
( ns = 1 ) tests directly compare the metaheuristics, but 
the GloMPO competitors had the advantages of infor-
mation sharing and supervision demonstrated in Test 
A; in these tests GloMPO competitors were run with 
four parallel children ( ng = 4 ). The ns = 4 tests were 
performed to demonstrate that GloMPO’s performance 
could not be solely attributed to the fact that, in the 
head-to-head tests, GloMPO effectively had four ran-
dom start locations while the serial competitor had one.

Figure 6 shows very strong performance by the GloMPO 
configurations with win rates remaining remarkably high 
for both metaheuristics across most tests. For the most 
part, GloMPO distributions regularly included the global 
minima and had significantly fewer outliers than the serial 
configurations. We believe that the improved perfor-
mance compared to Test A can be attributed to the more 
sophisticated generators used here.

Analyzing ns = 4 for the DA runs, one can see that the 
extra optimizers had the expected benefit of reducing the 
mean result and narrowing the distributions somewhat, 
but the serial results were still poor. For the BH runs, the 
serial results were dramatically improved, and the distri-
butions were almost the same as the GloMPO ones. The 
effect of increasing the number of serial BH optimizers 
is (almost) the same as running a single optimizer for a 
longer period. In that respect the results are unsurprising. 
As mentioned in Table 3, the serial optimizers were lim-
ited to 100 local searches, somewhat short compared to 
some literature values.

One may be tempted, in that case, to dismiss GloM-
PO’s performance as unimportant since it can be rep-
licated by simply running serial optimizers for longer. 
Consideration should, however, be given to the efficiency 

with which the evaluation budget is used. We reiterate 
that serial and GloMPO share the same limit on func-
tion evaluations, but the final evaluation need not be the 
best value ever seen, i.e., the lowest minima can be found 
at any point during the optimization. Figure 7 shows the 
average and standard deviation of the point in time (the 
function evaluation number) at which the minimum was 
located for the BH tests across the various configura-
tions and averaged over each of the 100 bouts.

For the ns = 1 tests, the number of function evaluations 
needed to find the minimum were comparable between 
GloMPO and serial as expected. Serial occasionally 
found its best minimum sooner because of the inherent 
GloMPO cost of running parallel children; but we recall 
the minima it found were much worse. For the ns = 4 
tests, serial was able to find comparably good minima 
but far later than GloMPO. At higher dimensions it is 
unlikely that ns = 4 will be sufficient to remain competi-
tive with GloMPO and this would need to be increased 
further, thus increasing the expense of the optimization.

In the case of fast functions, one may be indifferent 
to this extra expense, and wish to eschew the GloMPO 
overhead for the simplicity of simply running multiple 
serial optimizations. It is for this reason that we are par-
ticularly focused on HEB functions, where the difference 
in wall time becomes significant.

It is also worth mentioning that, during the BH ns = 1 
tests, we noticed that the GloMPO configuration was start-
ing an extremely large number of local optimizations at a sin-
gle minimum towards the end of the optimization because 
it had only been configured to stop when it had used the 
same number of function evaluations as the serial optimizer. 
To avoid repeating this problem (and unnecessarily bloating 
results files) the GloMPO competitors for the ns = 4 tests 
were given an extra stop criterion: the total number of local 
searches was limited to the same number conducted by the 
serial tests, i.e., 400. Even with this extra limitation, GloMPO 
was able to outperform the serial competitors.

As a final word, we emphasize that the point of these 
tests is not to identify a new best optimizer for LJ clusters. 
This has been the topic of much literature and focused 
attention by others [9, 49, 50, 67]. We seek to demonstrate 
that, in general, GloMPO is very customizable, and can 
improve the performance of optimizers on a problem, 
particularly in the context of novel HEB problems, where 
the optimal optimization approach is not clear.

Test C: GloMPO on ReaxFF
The final test we present in this work demonstrates the 
utility of GloMPO on a real-life HEB; the reparameteriza-
tion of a ReaxFF force field. We aim to show here some of 
the qualitative advantages of the framework.

Fig. 7  Mean and standard deviation of the evaluation number of the 
minimum found through serial and GloMPO using the basin-hopping 
strategy on the Lennard-Jones problem of varying dimensions



Page 19 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics            (2022) 14:7 	

Timings
The first analysis we conduct is the overhead cost of 
GloMPO. Its design intent is for expensive functions, and 
having a measure of when it becomes a bottleneck is use-
ful to deciding if a function is appropriate for GloMPO 
management or not. We begin by analyzing the behavior 
of the ReaxFF cost functions, before timing them within 
GloMPO.

The evaluation of the ReaxFF cost function is rela-
tively expensive and quite variable. For context, Fig.  8 
shows timings of a single cost function evaluation for the 
cobalt and disulfide cost functions evaluated on a single 
1.30GHz Intel Core i7-1065G7 CPU. In each scenario, 
ten repeats were performed. Two setups are shown. First, 
to demonstrate the repeatability of the timing for a given 
parameter set, the cost functions were evaluated at the 
midpoint of all the bounds. Second, to demonstrate that 
the evaluation time is a function of the parameter set, the 
cost functions were evaluated ten times each with ran-
domly generated parameter sets.

Both cost functions perform reproducibly and show 
little variation when repeatedly evaluating the same 
parameter set, however, they show large variability when 
evaluating different ones. The difference can be attrib-
uted to certain geometry optimization taking longer 
to converge when the parameter set is a poor one. This 
can become a serious problem when using a population-
based optimizer like CMA. The optimizer can only pro-
ceed as fast as the slowest evaluation, in cases where the 
timings differ substantially, this results in a significant 
amount of idle time within the optimizer (if the function 
evaluations are evaluated in parallel). Notably, the cobalt 
function is much more expensive and variable than the 
disulfide one, despite being conceptually simpler. This is 
an unfortunate consequence of how the training set is 
evaluated within ReaxAMS.

Table  4 quantifies the overhead of using GloMPO in 
conjunction with the disulfide and Schwefel functions. 
Cobalt was excluded from this test because its variabil-
ity in evaluation time would make it difficult to isolate 
GloMPO’s effects. In each scenario GloMPO managed a 

single optimizer and let it run for 300 s, the total number 
of function evaluations were counted. Each scenario was 
repeated five times, and the average and standard devia-
tion is shown. In such cases a single optimizer was run 
using a threaded backend. Python’s global interpreter 
lock implies that the entire process is run through a sin-
gle core. For comparison, the same optimizer, given the 
same task and time limit, was run outside of GloMPO. 
The ‘optimizer’ in these tests was not a real optimizer but 
rather an infinite loop that continuously evaluated the 
same vector. This eliminated optimizer related overhead, 
some ReaxFF variability, and ensured there would be 
no convergence before the end of the time-limit. These 
tests were conducted on a 2.60GHz Intel Xeon E5-2650 
v2 CPU, and repeated using GloMPO v2.1 (which was 

Fig. 8  Evaluation times of the ReaxFF cost functions using random parameter sets and repeatedly evaluating the same set (ten times each). 
Evaluations were performed on a single 1.30GHz Intel Core i7-1065G7 CPU

Table 4  Timing tests on the Disulfide and 20D Schwefel 
functions showing the number of function evaluations possible 
within a fixed time-limit

Timing tests are not optimizations, but an infinite loop of evaluations of the 
same parameter vector. Functions were tested managed and unmanaged for 
300 s on a single 2.60 GHz Intel Xeon E5-2650 v2 CPU. Every configuration test 
repeated 5 times. GloMPO cost estimates are constructed by assuming the 
mean unmanaged evaluation rate to be representative of the intrinsic function 
evaluation rate, and further assuming that the balance of the 300s evaluation 
time can be attributed solely GloMPO management costs
a GloMPO version number
b Optimizer configured to send every nth evaluation to the manager
c Average and standard deviation over the 5 repeats
d Unmanaged run

Function Ver.a Push Freq.b Function 
evaluations 
achievedc

GloMPO 
cost (ms/
eval)

Disulfided 57 ± 0

 Disulfide v2.1 1 56 ± 0 93.98

 Disulfide v3.1 1 57 ± 0 18.53

Schwefeld 9415963 ± 032073

 Schwefel v2.1 1 60227 ± 154 4.95

10 516510 ± 1614 0.55

 Schwefel v3.1 1 744309 ± 30812 0.37

10 1646672 ± 5801 0.15
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used to produce the N-CMA optimization results) and 
GloMPO v3.1 (which was used for Test B). 

It is clear that the GloMPO overhead is negligible 
in comparison to the ReaxFF costs. For the very fast 
Schwefel function, however, only a fraction of the num-
ber of function evaluations can be achieved. Profiling of 
GloMPO v3.1 shows the performance bottleneck to be 
at the point where data is read off the queue into which 
results are fed. We do not consider the performance drop 
to be critical. The design intention for GloMPO was for 
applications with expensive and difficult functions; faster 
ones were tested here only for convenience.

We also note that sending evaluations to the manager 
periodically rather than continuously can produce a sub-
stantial speed-up. This is a practical solution in cases 
where the user would like to use GloMPO for manage-
ment of the optimization of a fast function and does 
not need/want to gather a full evaluation history of the 
optimizers.

Degeneracy identification
One qualitative GloMPO advantage is its ability to explore 
more minima and, in this way, identify degenerate sets of 
solutions. We define degenerate parameter sets as those 
which produce similar function values but are not imme-
diately adjacent in parameter space. This is something 
that a single optimizer could not do, and something that 
GloMPO is able to do more efficiently than sequential 
serial optimization. To study this effect, the Shubert func-
tion from Test A, and cobalt cost function were used. As 
mentioned earlier, the former has several degenerate and 
periodically distributed global minima. Table 5 shows the 
maximum, average, and total number of times answers 
very near the best minimum were located for the cobalt 
error and Shubert test functions across all bouts. This 
demonstrates that GloMPO is not only more likely to find 
the minimum at all, but also more likely to find it at differ-
ent locations (if such a possibility exists).

Table 5  Maximum, average, and total number of degenerate parameter sets found by cobalt and Shubert functions across all bouts

Degenerates are defined as parameter sets which produce similar function values but are not immediately adjacent in parameter space
a Degenerate range: 1230 < f (x) < 1270

b Degenerate range: −39303 < f (x) < −39000

Function GloMPO Serial

Max. Sum Mean Max. Sum Mean

Cobalta 5 31 3.100 4 18 1.800

Shubertb 4 119 0.595 3 78 0.390

Fig. 9  Scaled parameter set values of five cobalt parameter sets found during a single GloMPO optimization run in Set 1. ( 1236 < f (x) < 1260)
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Figure 9 shows the parameter values for five degenerate 
sets found in a single GloMPO optimization run in Set 1. 
Note, only the optimized parameters are shown, and they 
have been scaled between 0 and 1 for comparison. These 
sets produce errors ranging between 1236 to 1260. The 
Euclidean distances between these points range from 0.38 
to 1.21. It is immediately clear that the parameter sets are 
correlated in some way and share many similarities.

One can also mimic a longer GloMPO optimization 
by taking all 31 degenerate parameter sets found across 
all bouts. Figure 10 shows a PCA analysis performed on 
these sets. To confirm that there is not a spurious correla-
tion, the eigenvalues for 100 sets of 31 normally distrib-
uted randomly generated vectors with 12 elements were 
also evaluated. The average and standard deviation of 
these results are show in the figure for comparison. The 
eigenvalues for the cobalt parameter sets clearly demon-
strate a higher degree of correlation than the randomly 
generated parameter vectors, which tend to show some 
spurious correlations. It can be said that the cost function 
is clearly dominated by two or three dimensions; a fact 
which can also be seen in Fig. 9. This suggests that there 
may be a narrow valley of good solutions connecting these 
sets.

One can investigate such relationships to deter-
mine how and why they are connected. Literature sup-
port for this exists; Barcaro et  al. [3] found evidence of 

degeneracy in their silica force field where two sets of 
very different parameters resulted in similar predictive 
results. GloMPO’s ability to better identify and group 
such minima may be helpful in future force field develop-
ment. This can lead to a reduced number of dimensions 
by enforcing relationships between linked parameters. It 
can also reveal deficiencies in the training set. For exam-
ple, parameter sets which have the same error value, but 
perform very differently when applied to a molecular 
dynamics simulation, demonstrate that the training set 
has not fully captured some critical property; it may also 
be an indication of overfitting.

Overfitting
We should briefly mention the problem of overfit-
ting which is of critical importance when designing 
force fields for production runs. Making useful fields 
was not our immediate concern here, however, future 
authors may be interested in using validation sets in 
their work to guard against the problem. GloMPO han-
dles this easily by allowing optimization tasks to return 
any extra data they please (like a validation set result). 
This information is logged, and available to the hunters. 
Thus, a hunter can easily be designed to terminate chil-
dren which show a deterioration in the validation set. 
This flexibility of allowing extra information to be pro-
duced by the task, allows GloMPO to make use of any 
order parameter to manage the optimization. We also 
note that the ReaxFF interface packaged with GloMPO 
already includes validation set infrastructure.

Benchmark test results
Due to the computational expense of ReaxFF reparam-
eterizations, only ten bouts could be carried out for these 
tests. Speaking in terms of win rates in such a context 
would be disingenuous given that a single outlier could 
significantly warp the results. In this section, results from 
each bout are presented, and GloMPO’s effect is analyzed 
qualitatively. For reasons that will be fully explored in 
“Challenges of the error function”, optimizers working on 
the disulfide reparameterization did not converge natu-
rally. Each bout was stopped to limit further computa-
tional expense after 1.7 ×  106 total function evaluations 
had been used by all the optimizers combined.

Given this fixed termination condition, bouts for the 
disulfide tests are not linked in the way all the other 
results in this work are. Figure  11 shows the minima 
located by the ten serial and ten GloMPO reparameteri-
zations, each sorted in ascending order. GloMPO pro-
duced better results than serial optimizations in eight of 
the ten comparisons.

Fig. 10  Eigenvalues of the covariance matrix of 31 degenerate cobalt 
parameter sets found across all GloMPO reparameterizations of this 
set. (1236 < f (x) < 1260). For comparison, the averaged eigenvalues 
of the covariance matrices of 100 normally distributed randomly 
generated 31 × 12 matrices are also included
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Figure  12 shows the minima generated during repa-
rameterizations of the cobalt force field as a function of 
evaluations used. GloMPO consistently produces good 

quality answers, unlike serial which has a high vari-
ability. This behavior is also insensitive to the evaluation 
budget.

Fig. 11  Serial and GloMPO final minima of the ReaxFF error function to reparameterize the disulfide ReaxFF force field (Set 6). Results sorted 
ascending

Fig. 12  Serial and GloMPO final minima of the ReaxFF error function to reparameterize the cobalt ReaxFF force field (Set 1) as a function of number 
of function evaluations used
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Broadly, GloMPO did improve the quality and quan-
tity of the minima found during ReaxFF reparameteriza-
tions. Its performance, however, was not as decisive as its 
effect on Tests A and B. This can be partially attributed to 
ReaxFF’s particular properties which make it difficult and 
expensive to handle, and partially attributed to the fact 
that there was no information sharing or sophisticated 
metaheuristic used.

GloMPO nudging with ReaxFF
N-CMA was used on both the cobalt and disulfide error 
functions. Unfortunately, optimizers all converged to the 
minima to which they were nudged. This was usually the 
first minimum encountered by one of the early optimiz-
ers. This failure, however, is more a criticism of N-CMA 
as applied to ReaxFF, rather than of information sharing 
between children which can be applied in different ways, 
and was also shown to be important in Test B. Although 
these results were disappointing, investigating the rea-
sons for this proved enlightening.

Evaluations of the Schwefel, Deceptive, Rastrigin and 
disulfide error functions were studied. The disulfide error 
function has 87 parameters. For direct comparison, the 
87-dimension versions of the mathematical test functions 
were used here. For each function, the best minimum 
was identified. In the case of the test functions, the global 
minimum is known. For the disulfide error function, we 
define the best minimum as the lowest ever found dur-
ing our optimizations. For each function, 860 vectors 
were sampled uniformly from the domain. For ten of 
these, one random element in the vector was changed 
to the corresponding value in the best minimum vector. 
For another ten, two random elements were changed 
to the corresponding values in the best minimum vec-
tor, and so on until the final set of ten vectors containing 
86 correctly set parameters and one random value. The 
function values corresponding to these vectors are plot-
ted versus the number of correctly set vector elements in 
Fig. 13. 

This figure demonstrates two things quite clearly. First, 
as discussed in “Optimization task”, test functions are 
often less complex than is sometimes assumed. Second, 
nudging cannot work on a function as rugged as ReaxFF. 
With between 10 and 20 well-set parameters, the test 
functions already show improvements in their function 
value. More than 80 parameters must be set correctly to 
see dramatic improvements in the disulfide error func-
tion. For the test functions, if certain parameters are cor-
rectly set, they will, on average, produce lower function 
values than sets with a fewer number of correctly set 
parameters. In other words, this can be informative for 
the optimizer, and encourage it to explore regions with 
more elements which are correctly set. This is not true 

for the ReaxFF error functions. The variability in function 
value is orders of magnitude larger than the reduction 
induced by setting parameters correctly. Thus, optimizers 
will not be able to learn what elements of the parameter 
vectors to replicate; nudging would be uninformative.

One can draw several important conclusions from this: 

1	 The ReaxFF error function can be characterized 
as having very many local minima, with very small 
basins of attraction, immediately surrounded by 
very high barriers. This makes locating and explor-
ing minima extremely difficult; almost to the point of 
being equivalent to a random search.

2	 Single parameter tuning approaches such as SOPPE 
can be wildly misleading, particularly without expert 
intervention.

3	 The crossover operators in evolutionary algorithms 
will be limited in efficiency because they assume that 
a partially correct parameter vector has an evolution-
ary advantage, i.e., noticeably lower error. Figure  13 
clearly shows this assumption barely holds for the 
disulfide training set.

It is unlikely that any optimization algorithm would be 
able to efficiently deal with such a pernicious problem. 
It would perhaps be more profitable to address the con-
ditioning of the error function itself, before trying to 
develop optimization approaches further. One can see 
that an improvement trend does exist for the disulfide 
function in Fig. 13, but it is masked by a large amount of 
noise. If the error function could be better conditioned 
by fixing certain parameters or removing certain ele-
ments from the training set, this noise could perhaps be 
reduced. This would generally improve the performance 
of most optimization algorithms, but conceivably also 
unlock the potential of N-CMA.

Challenges of the error function
We close this section with some interesting insights into 
the behavior of the cost functions that came from ana-
lyzing the various optimization trajectories saved in 
the GloMPO logs. These insights can help future work-
ers reparameterizing ReaxFF fields. Figure  14 shows an 
example of some of the optimizers taken from a disulfide 
serial optimization. Each demonstrates a difficulty when 
handling these types of error functions.

The first issue is high sensitivity to minute changes 
in parameter values. In optimizer 10, one sees the opti-
mizer behave strangely, and oscillate between a lower 
and higher function value before ultimately settling at 
the higher one. Optimizer 1 jumps significantly several 
times during its long focus phase. This instability is more 
pronounced than it appears since only the best function 
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evaluation is recorded per CMA iteration (17 function 
evaluations). In other words, to see the spike in function 
value, all 17 evaluations must simultaneously evaluate 
to the higher level, the rest of the time this behavior is 
happening, and effecting the optimizer’s search behavior 
without the user’s knowledge. The maximum difference 
between parameters at the lower and higher level for 

both optimizers is on the order of 10−4 ; parameters range 
between 0 and 1.

The parameter vectors generated by the optimizer must 
go through several transformations, and a loss of numeri-
cal precision in a file writing step (due to software con-
straints), before finally being tested in the ReaxFF model. 
The Python CMA-ES implementation used here also has 

Fig. 13  Evaluations of four optimization functions with varying number of parameters correctly set to values which produce the best minimum. 
Remaining parameter values are set randomly. Ten repeats are performed for each number of correctly set parameters. Some function values are 
shifted vertically by some amount to ensure all values are positive and all functions can be visualized comparatively on log-scales



Page 25 of 29Freitas Gustavo and Verstraelen ﻿Journal of Cheminformatics            (2022) 14:7 	

its own internal transformations. Such high sensitivity 
to small parameter changes can cause spurious behav-
iors, as seen here. This behavior can have several serious 
effects: (1) it can misdirect optimizers during their explo-
ration phase, (2) it can prevent convergence from being 
achieved if an optimizer is converging towards such a 
point, and (3) it creates the need for the user to validate 
the stability of the parameter set by repeated evaluations.

The second problem encountered during ReaxFF 
reparameterization was the late-stage improvement in 
function value after very long periods. The appearance 
of these late-stage improvements is rare but occurs fre-
quently enough to work against GloMPO which shuts 
down optimizers which appear converged. A plausible 
explanation for this is associated with the volatility of the 
error function. Local information available to the opti-
mizers is insufficient to direct them to better solutions, 
only when randomly sampling outside of a basin can the 
optimizer make improvements in the cost function value. 
This behavior is dependent on the type of optimizer used, 
CMA-ES – which randomly draws its samples from a 
multivariate Gaussian distribution—is susceptible to 
this, a deterministic algorithm, however, would not be. 
Another possibility is that the covariance structure of 
the error function changes very slowly in a given area. In 
this scenario, CMA would require many iterations before 
it has a properly updated covariance matrix and is able 
to sample in the correct direction. In this case, similar 
behavior would occur in quasi-Newton methods.

Closely linked to this phenomenon is the early-stage 
improvements in function value seen shortly after the 
optimizer appears to converge. Although occurring for 
the same reasons as before, early-stage improvements 
could be well handled by making GloMPO’s hunting con-
ditions less strict and allowing the optimizers to remain 
alive for longer periods. Big improvements were seen 
between the disulfide bouts in Sets 5 and 6, and between 
the cobalt bouts in Sets 0 and 1.

All of the suppositions can be validated through visu-
alizations of parameter scans of the error function. Fig-
ure 15 shows a sample of such scans performed around 
the parameter set which produced the lowest error for 
the disulfide training set. The scans were performed by 
evaluating the error function 100 times along each of the 
parameters from their lower to upper bound. Of the 87 
parameters trained in the set, 8 scans are presented here. 
These were selected to demonstrate the different types of 
behavior seen while remaining representative.

Figure 15c shows an example of high sensitivity where 
the minimum is located very near a steep barrier, Fig-
ure  15a shows the minimum sandwiched between very 
steep boundaries on both sides. In either case, small 
changes in parameter value result in large jumps in func-
tion value. Fig. 15d,  f and h show examples of the error 
function oscillating between two or more different func-
tion values, this can mislead the optimizers such that 
they oscillate between values and are unable to converge. 

Fig. 14  Sample of optimizer trajectories from a serial reparameterization of the disulfide ReaxFF force field. Each optimizer examples some difficulty 
with handling ReaxFF error functions
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Figure 15g is an example of how the error function can 
mislead the optimizer away from the minimum. Fig-
ure  15b displays little discernible trend for much of its 
scan. In such cases, the minimum is only found when the 
optimizer randomly samples a better area, thus causing 
the late-stage improvements seen in Fig. 14.

Conclusions
This work introduces GloMPO (Globally Managed 
Parallel Optimization), a metaheuristic optimization 
framework, which seeks to provide a Python applica-
tion through which difficult optimizations can be man-
aged. We believe this is the first such Python framework, 
and the first to formalize a forced termination mecha-
nism over a set of optimizations running in parallel. This 
approach is demonstrated to quantitatively improve the 
quality of minima found through benchmark testing on 
several global optimization test functions. On average 
GloMPO produces better results than a normal optimi-
zation given the same iteration budget. GloMPO intro-
duces several qualitative advantages such as, providing a 
standardized and user-friendly interface to optimization 
tasks, and acting as a general workflow manager.

Further, dramatic, improvements are achieved when 
GloMPO is configured to share information between 
its managed optimizers. Similarly good performance is 
seen when GloMPO is configured to use basin-hopping 
and dual annealing algorithms through its framework 

on Lennard-Jones cluster problems of varying difficulty. 
These tests demonstrated how GloMPO can be used 
to mimic published metaheuristics, while offering the 
chance to mix and match different configurations.

GloMPO also outperforms traditional optimiza-
tion when applied to ReaxFF reparameterizations. The 
improvements, however, are less pronounced than when 
applied to the mathematical test functions due to the 
highly oscillatory and non-robust nature of such func-
tions. To unlock GloMPO’s demonstrated potential, work 
must be done to better condition ReaxFF’s error function. 
This involves careful study of parameter sensitivities, and 
the contributions within the training sets.

A further advantage GloMPO has over traditional opti-
mization is the identification of degenerate parameter 
sets; parameter sets which share similar error values but 
differ markedly in parameter values. Such sets can help 
researchers identify relationships between parameters or 
deficiencies in the training set.

GloMPO has proven itself to be a robust framework 
that can aid reparameterization, and optimization efforts 
when computational expense or function complexity is a 
consideration. It certainly warrants more development. 
We explicitly note, however, that it is not an appropriate 
tool for fast functions. The use of such functions in this 
work was borne out of the necessity of producing a large 
number of results in a timely manner. In practice, how-
ever, more efficient optimization algorithms exist which 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 15  Evaluations of the ReaxFF error function for the disulfide training set against parameter values which were scanned (one at a time) from 
their lowest to highest bounds. Other parameters were set to the corresponding values in the reference set, i.e., the parameter set found during 
optimization which produced the lowest error. Of the 87 scans, 8 representative ones are presented here for brevity. The purple vertical lines show 
the location of the reference value for the parameter
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have been developed in faster languages like FORTRAN 
or C/C++. At the opposite limit, however, where the 
optimizer is not the bottleneck and the researcher must 
carefully consider their optimization choices due to time 
constraints, or a pathologically misbehaving function, 
GloMPO is an appropriate tool to help automate those 
controls.

As an introductory work, we leave many aspects of the 
optimization management approach to be studied; we 
list several such examples below in the hope of stimu-
lating further research. First, a more rigorous hunt-
ing framework should be developed, one that is able to 
perform well regardless of the function being studied. 
Second, the configurations used here were all chosen 
empirically. It is believed that more rigorous study of 
these settings could improve performance even further. 
Third, only the simplest selectors and generators were 
used in this work, but more nuanced configurations 
could also conceivably lead to better results. Finally, a 
natural extension of GloMPO seems to be the develop-
ment of an analysis tool which can use the information 
gathered by the manager to identify problems or char-
acteristics of the optimization task. This could be of par-
ticular use in determining how to better condition the 
ReaxFF error function for example.
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