
McKay et al. Journal of Cheminformatics (2022) 14:24
https://doi.org/10.1186/s13321-022-00604-9

SOFTWARE

Surge: a fast open‑source chemical graph
generator
Brendan D. McKay1*   , Mehmet Aziz Yirik2    and Christoph Steinbeck2*    

Abstract 

Chemical structure generators are used in cheminformatics to produce or enumerate virtual molecules based on a set
of boundary conditions. The result can then be tested for properties of interest, such as adherence to measured data
or for their suitability as drugs. The starting point can be a potentially fuzzy set of fragments or a molecular formula. In
the latter case, the generator produces the set of constitutional isomers of the given input formula. Here we present
the novel constitutional isomer generator surge based on the canonical generation path method. Surge uses
the nauty package to compute automorphism groups of graphs. We outline the working principles of surge and
present benchmarking results which show that surge is currently the fastest structure generator. Surge is available
under a liberal open-source license.

Keywords:  Structure generation, Constitutional isomers, Canonical generation path

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Chemical structure generators enumerate or generate
molecular graphs of organic or bioorganic molecules.
They are an integral part of systems for computer-
assisted structure elucidation (CASE) [1] and can be used
to create molecular libraries for virtual screening [2, 3]
or enumerate chemical spaces in general [4]. The history
of chemical graph generators goes back at least to the
1960s DENDRAL project which was aimed at the CASE
of organic molecules based on mass spectrometric data
[5]. DENDRAL was developed for NASA’s Mariner pro-
gram to search for life on Mars [5, 6]. Its structure gen-
erator used substructures as building blocks and was able
to deal with overlapping substructures. In the early his-
tory of the structure generators, ASSEMBLE was another
building block based structure generator [7]. In the field,
there is a family of generators based on mathematical

theorems such as algorithmic group theory [8] and com-
binatorics [9]. Besides DENDRAL, MASS [10] was also
another good example for the applications of mathemati-
cal theorems in structure generation. It was a tool for the
mathematical analysis of molecular structures. SMOG
[11] was the successor of the MASS algorithm.

We have recently reviewed the history of chemical
graph generators in detail [12].

While most structure generators work in a determin-
istic way, i.e. exhaustively generate structures according
to given boundary conditions [13], stochastic generators
were also suggested for large molecular spaces [14].

Among the currently available structure generators,
such as DENDRAL, ASSEMBLE, SMOG, COCON [15]
and LSD [16], MOLGEN [17] constituted the state-of-
the-art for decades in terms of speed, completeness and
reliability.

The first version of MOLGEN was based on the strat-
egy of DENDRAL software and developed to overcome
the limitations of DENDRAL [18]. The software is based
on the orderly graph generation method [19]. Although
MOLGEN is the de facto gold standard in the field, it
has the downside of being closed-source software. The
algorithm cannot be further developed or modified by

Open Access

Journal of Cheminformatics

*Correspondence: brendan.mckay@anu.edu.au; christoph.steinbeck@uni-
jena.de
1 School of Computing, Australian National University, Canberra, ACT​
2601, Australia
2 Institute of Inorganic and Analytical Chemistry, Friedrich-Schiller-
University, Lessingstr. 8, 07743 Jena, Germany

http://orcid.org/0000-0002-3553-0496
http://orcid.org/0000-0001-7520-7215
http://orcid.org/0000-0001-6966-0814
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00604-9&domain=pdf

Page 2 of 9McKay et al. Journal of Cheminformatics (2022) 14:24

scientists based on their interests. The most efficient and
fast open-source chemical graph generator was MAY-
GEN [20] based on the orderly generation method. How-
ever, MAYGEN is approximately 3 times slower than
MOLGEN.

The state of the art of large scale structure generation
was recently set by the lab of Jean-Louis Reymond [21]
in developing an in-house solution for a nauty-based
structure generator, which enabled them to produce the
numeration of 166 billion organic small molecules in the
chemical universe database GDB-17. To the best of our
knowledge, this in-house generator was not released as
open-source or otherwise.

Thus, there is still the need for an efficient open-source
chemical graph generator. In [20] we expressed the hope

to “trigger a surge in the development of improved and
faster” structure generators. Here we present the novel
structure generator surge, based on the principle of
the canonical generation path method. Surge is open-
source and outperforms MOLGEN 5.0 by orders of mag-
nitude in speed. Furthermore, surge is easily extensible
with more features and adaptable to further application.

Implementation
Data
We assembled a list of molecular formulae for bench-
marking surge against MOLGEN 5.0 in Tables 1, 2.
These formulae were taken from the natural products
database COCONUT [22]. The size of these molecular
formulae varies and is enough to challenge even the best

Table 1  Execution time (seconds) for selected MF of natural products on a compute-optimized c2-standard-4 Google cloud VM

Times for MOLGEN 5.0 were determined with the -noaromaticity flag to achieve comparability. Both MOLGEN and surge were instructed to generate but not to
output structures. Both generators generated the same number of isomers

Name of notable isomer Molecular formula Species #Isomers SURGE
time (s)

MOLGEN
time (s)

Bassianolone C10H16O5 Beauveria bassiana 1,092,378,303 69 5146

Pantothenate C9H17NO5 Arabidopsis thaliana 1,652,346,465 165 11,122

Lysopine C9H18N2O4 Parthenocissus tricuspidata 5,979,199,394 289 27,250

Cribronic acid C6H11NO7S Cribrochalina olemda 2,375,932,807 323 13,445

Antibiotic CV-1 C7H14N2O6 Streptomyces CO-1 4,193,416,397 448 24,030

Thr-Thr C8H16N2O5 Trypanosoma brucei 5,955,022,220 575 37,103

O-Succinyl-l-Homoserine C8H13NO6 Escherichia coli K12 5,639,328,954 629 35,128

Etrogol C13H18O2 Stachylidium 6,316,260,274 746 44,395

Indoleacetamide C10H10N2O Pseudomonas savastanoi 13,290,477,420 1187 59,910

Colletotricole A C9H13NO3S Colletotrichum gloeosporioides A12 20,902,484,656 1765 88,151

Nigerapyrone E C11H12O4 Aspergillusniger MA-132 31,627,481,929 2179 181,725

Siastatin B C8H14N2O5 Streptomyces verticillus var. quintum 27,692,853,176 2628 183,167

P-Hydroxyhippuric acid C9H9NO4 Homo sapiens 21,964,168,804 2731 121,362

Deacetyldemethylanisomycin C11H15NO3 Streptomyces sp. strain SA3097 95,541,477,841 4229 580,772

Isoleucylisoleucyl anhydride C12H22N2O2 Cordyceps bassiana 59,576,199,503 4782 516,950

Hydantocidin C7H10N2O6 Streptomyces hygroscopicus 40,946,033,849 5238 262,323

Aerugine C10H11NO2S Pseudomonas aeruginosa 93,330,898,027 8124 533,440

Flavensomycinoic acid C9H9NO5 N/A 113,165,341,837 8870 793,389

Dopamine 4-O-Sulfate C8H11NO5S Homo sapiens 89,694,168,554 9880 606,333

Pestalactam C C10H10ClNO3 pestalotiopsis sp. 232,824,605,597 14,830 1,700,022

Glugaba C9H16N2O5 Escherichia coli 176,162,377,006 16,265 1,315,301

Shihunine C12H13NO2 Dendrobium loddigesii 427,207,647,324 19,769 2,504,164

Gostatin C8H10N2O5 sumanensis 187,389,585,693 21,781 1,422,863

Elaiomycin C13H26N2O3 N/A 303,023,674,167 29,288 2,729,280

Oryzoxymycin C10H13NO5 Streptomyces venezuelae var. oryzoxymyceticus 552,024,644,350 54,372 6,325,646

Gammaglucys C8H14N2O5S Mus musculus 699,785,343,381 69,844 4,989,287

Phyllurine C10H10N2O3 Phyllanthus urinaria 1,511,861,775,412 83,186 8,292,585

Vanilloylglycine C10H11NO5 Homo sapiens 1,182,104,108,010 133,136 21,426,660

Deoxyuridine C9H12N2O5 Phakellia mauritiana 1,795,817,811,706 180,727 13,983,652

Sulphostin C5H13N4O5PS N/A 2,029,911,211,739 226,830 11,893,149

Page 3 of 9McKay et al. Journal of Cheminformatics (2022) 14:24 	

constitutional isomer generators available (see Results
section).

Algorithm and mathematical background
Surge is based on the nauty [23] package for comput-
ing automorphism groups of graphs as well as canonical
labels. Like nauty, surge is written in a portable sub-
set of C and runs on a considerable number of different
systems.
Surge is an integration of three existing tools from

the nauty suite [24]: (a) geng generates simple graphs
based on certain boundary conditions, (b) vcolg colors
vertices in the output of geng and (c) multig inserts
multi-edges in the output of the first two tools (Fig. 1).

An isomorphism between two graphs is a bijection
between their vertex sets that maps edges onto edges.
If the graphs have adornments, such as atom types for
the vertices or bond multiplicities for the edges, then
those adornments must be preserved by the mapping.
If the two graphs are the same; i.e., the isomorphism is

from a graph to itself, it is called an automorphism. The
automorphisms form a group under the operation of
function composition, called the automorphism group
(Fig. 2).

The meanings of isomorphism and automorphism
are different for each of the three stages in our algo-
rithm. Referring to Fig. 1, at the first stage (which we
call a simple graph) there are no vertex or edge adorn-
ments and all rotations and reflections, 10 in total, are
automorphisms. When vertex adornments are added in
the second stage, the atom type becomes significant so
only the identity mapping and the reflection through
the oxygen atom are automorphisms. In the final stage,
edge adornments are added but in this example the
automorphism group is not further reduced since the
reflection through the oxygen atom preserves both
atom type and bond multiplicity. Note how the auto-
morphism groups in the second and third stages are
subgroups of the automorphism groups in the previous
stages.

Table 2  Execution time (seconds) for selected MF of natural products on a compute-optimized c2-standard-4 Google cloud VM

Surge was run with its options and instructed to generate but not to output structures

Molecular formula -p0:1 -P -B5 -B9

#Iso Time #Iso Time #Iso Time #Iso Time

C11H19N3O 58,175,540,999 3746 72,486,967,073 5046 69,648,876,936 4978 51,275,365,737 3048

C11H18N2O2 53,925,725,334 3648 67,177,819,545 4914 64,367,528,959 4838 47,278,714,772 2946

C11H15NO3 64,661,412,269 4759 94,361,334,994 7682 89,131,725,467 7512 54,627,135,057 3595

C9H18N2O4 5,810,409,623 519 5,979,199,394 541 5,918,503,858 538 5,583,717,596 484

C11H12O4 17,216,498,094 1894 30,438,650,047 4485 28,660,902,856 3777 14,044,693,099 1256

C10H16O5 989,273,530 107 1,092,378,303 122 1,060,206,152 122 895,109,814 88

C13H20O2 1,211,481,307 147 1,514,909,702 203 1,443,691,541 197 1,038,843,543 101

C8H11NO6 12,795,251,232 1511 15,771,433,061 1953 15,035,794,185 1942 11,169,581,507 1217

C9H9NO5 62,471,125,788 8244 109,135,601,623 16,008 102,826,808,386 15,645 51,607,646,947 6062

C12H13NO2 177,274,446,997 13,639 382,246,449,331 34,476 381,333,513,411 34,285 147,423,365,942 9700

Fig. 1  An example case for the combination of geng, vcolg and multig functions for the furan molecule, C4H4O. First the simple graph is
constructed. The nodes are coloured as, black for carbons and red for the oxygen. In multig, the edge multiplicities are optionally increased to
create multiple bonds

Page 4 of 9McKay et al. Journal of Cheminformatics (2022) 14:24

First stage
Input to surge consists of a molecular formula such
as C7H12O2S. Based on the element counts, in this case
C = 7, O = 2, S = 1, H = 12, the atom valencies are used to
calculate the plausible range of the number of edges of a
connected simple graph representing the topology of a
molecule with this formula, with hydrogen atoms omit-
ted. Then geng is called to generate all the connected
simple graphs with those parameters, subject also to a
maximum degree condition depending on the molecular
formula [25]. Geng generates one graph from each iso-
morphism class and these are passed to the second stage
as they are produced, without any need to store them
[25]. In this example, there are 10 non-hydrogen atoms
and the number of edges is in the range 9–11.

Second stage
Given a simple graph G from the first stage, the second
stage assigns elements to vertices in all distinct ways.
The element counts must be correct, and we must have
valence ≥ degree at each vertex. More onerously, we only
want one member of each equivalence class of element

assignment under the automorphism group of G (Fig. 3).
We next explain how this is accomplished.

The vertices of G are arbitrarily numbered 1,2,…,n.
An element assignment can be represented as a list
showing the element assigned to each vertex in order
of vertex number. For example, a valid list might be
L = (C,C,C,S,O,C,C,C,O,C).

Automorphisms of G have an action on lists that per-
mutes their entries. Namely, for list L and automorphism
γ , the list γ(L) assigns the same element to vertex γ(v) as
L assigns to v, for each vertex v. Thus,

If L is a list of elements and γ is an automorphism, L
and γ(L) give equivalent assignment of elements to the
vertices of G. Our task in this stage is to choose exactly
one assignment from each equivalence class. Given a
fixed ordering of the elements, for example C < O < S, two
lists can be compared lexicographically, for example

L = (C,C,O, S,O, C, C, C, C, C) and γ

= (123)(56)implyγ (L) = (O,C, C, S, C,O, C, C, C, C).

(C,C, C, S,O, C, C, C,O, C) < (C,C,O, C, S, C, C,O, C, C)

Fig. 2  Surge flowchart

Fig. 3  The simple graph on the left has an automorphism which is a reflection about the dashed line. This shows that the second and third images
are equivalent and so will lead to the same molecular structures when bond multiplicities are assigned. So we only want to keep one of them

Page 5 of 9McKay et al. Journal of Cheminformatics (2022) 14:24 	

This enables us to define

 the maximum list in the equivalence class of L. Note that
canon(L) = canon(L’) if L and L’ are equivalent, so there is
a unique maximum list L* in the equivalence class and we
can recognize it by the condition canon(L*) = L*. To put
it another way, if γ(L) > L for any automorphism γ then L
 = L*; otherwise L = L*.

Now we describe the conceptual method for the sec-
ond stage. For given G:

This algorithm is efficient if the automorphism group
Aut(G) is small, but that is not always the case. Therefore,
we adopt a more complex approach. An automorphism
of G is called minor if it merely swaps two leaves (vertices
of degree 1) that have a common neighbour. The minor
subgroup M ≤ Aut(G) is the subgroup generated by all
the minor automorphisms.

A flower is a maximal set of leaves with the same neigh-
bour. In the left graph of Fig. 4, the flowers are {1,2,3},
{6,10} and {9,11}. The minor subgroup M consists of all
automorphisms that preserve the flowers, such as (1 2 3)
(9 11). The order of M is 3! × 2! × 2! = 24 . In addition

canon(L) = max{γ (L) | γ in Aut(G)},

to M, the automorphism group may contain automor-
phisms that do not preserve the flowers, such as (6 11)(7
8)(9 10). To capture such automorphisms, we colour the
graph as in the right side of Fig. 4. Vertices not in flow-
ers are coloured black. Within each flower, vertices are
coloured red, blue, green, … in order of vertex number,
using a fixed list of colours that does not include black.
Now let N be the group of automorphisms that respect
the vertex colours. In the example, N has only the iden-
tity and (6 9)(7 8)(10 11).

An arbitrary automorphism of G can be obtained by
first applying an element of N to capture how the flow-
ers are mapped to each other, and then applying an ele-
ment of M to capture the movement of leaves within each
flower. In both steps the choice is unique, so we have a
factorization

(In the language of group theory, M is a normal sub-
group and N is a complete set of coset representatives.)
In the example, consider (1 2)(6 11)(7 8)(9 10). It swaps
the flowers {6,10} and {9,11} so we choose the element of
N which does that, namely γ = (6 9)(7 8)(10 11). Then we
have to arrange the leaves within the flowers with an ele-
ment of M, namely δ =(1 2)(6 10)(9 11). This achieves γ δ
= (1 2)(6 11)(7 8)(9 10).

The main advantage of factoring Aut(G) = NM is the
following.

Theorem  For any list L, L = canon(L) if and only if
L = max { δ(L) | δ in M} and L = max { γ(L) | γ in N}.

Aut(G) = NM = {γ δ | γ in N, δ inM}.

Fig. 4  A graph with 3 flowers and the colouring used to compute N

Page 6 of 9McKay et al. Journal of Cheminformatics (2022) 14:24

Proof  The “only if ” direction is obvious since M and N
are subsets of Aut(G). Suppose in the other direction that
L = max { δ(L) | δ in M} and L = max { γ(L) | γ in N}. From
the factorization of Aut(G) we know that L* = δ(γ(L)) for
some γ in N and δ in M. Note that in both L and L* the
elements are in nonincreasing order within each flower,
as they are maximized with respect to M. Also recall that
the automorphisms in N preserve the order of vertex
numbers within the flowers, by virtue of the fact that we
coloured the vertices in order of vertex number when we
computed N. This means that we can take δ to be identity,
and so L* = γ(L). This proves that L* = L, since L = max {
γ(L) | γ in N}.

In order to implement the condition L = max { γ(L) |
γ in M}, we don’t need to compute M explicitly. Instead,
since M is generated by transpositions, it suffices that
within each flower the elements are in decreasing order
relative to vertex number. Using the ordering of ele-
ments that we have chosen, in the example we just need
to enforce the inequalities element(1) ≥ element(2) ≥ ele-
ment(3), element(6) ≥ element(10) and element(9) ≥ ele-
ment(11). The program recursively assigns elements to
vertices in order of vertex number and enforces these
inequalities as they become active rather than at the end.

To implement the condition L = max { γ(L) | γ in N}, we
compute N using nauty and test that γ(L) ≤ L for each γ
in N. This is efficient in practice because N is very small
most of the time.

We can also partly enforce N by means of inequalities:
since vertex 6 is the least vertex in a non-trivial orbit {6,
9} of N, we can assume element(6) ≥ element(9). This is
not necessary but it gives a small time improvement.

As an example, C7H14N2O7 has 15,425,657,612 isomers.
Using the factorisation Aut(G) = NM reduces the number
of nontrivial groups processed by 58% and the maximum
group size from 2592 to 72. The overall generation time
is 18% less. In typical cases, the method provides about
10–40% reduction in cost.

Third stage
After the assignment of elements to vertices is complete,
the program moves to the next stage of selecting a bond
multiplicity for each edge. This is the same type of prob-
lem as in the second stage. Instead of a list of elements
for each vertex, we have a list of multiplicities for each
edge. Instead of Aut(G), we use the subgroup of Aut(G)
that preserves the element assignment. Otherwise M and
N are defined as before. In the implementation, we don’t
use nauty to compute N but instead filter the N sub-
group from the second stage, rejecting those automor-
phisms which don’t preserve elements and converting the
others to their action on the edges.

The constraints we have at this time are that for each
atom the total number of incident bonds counting mul-
tiplicity must be at most the valence of the atom, and
that the total of (valence—incident bonds) over all atoms
must equal the desired number of hydrogen atoms. Once
these constraints are satisfied, there is exactly one way to
add hydrogens (though the program does not add them
explicitly).

As an example, geng makes 534,493 unlabelled sim-
ple graphs in 1.3 s for Lysopine C9H18N2O4. For these
graphs, the second stage subgroup N is trivial 58% of the
time and never larger than 72. Assignment of elements
to vertices produces 3,012,069,151 vertex-labelled graphs
in 90s.The N subgroup for the third stage is trivial 98% of
the time and never larger than 24. Finally, the assignment
of bond multiplicities produces 5,979,199,394 completed
molecules in an additional 100 s.

As demonstrated by our examples, surge can gener-
ate molecular structures very quickly, allowing for the
inspection of extremely large sets of isomers. The gen-
eration speed is several times faster than even the fastest
output format (SMILES). On the other hand, any particu-
lar application will likely have stronger restrictions on
the structure than just a molecular formula. For example,
some substructures may make the molecule unstable or
give it chemical properties undesirable in the application.
Or, experimental investigation of an unknown compound
may have determined some features of the structure, so
that only molecules with those features are of interest.

For these reasons, surge provides a number of filters to
limit the output. The 3-stage generation method allows
some of them to be implemented almost for free, and all
of them are much more efficient than filtering the output
through an external program. For example, restrictions
on the number of short rings and the planarity of the
molecule can be enforced at Stage 1. Surge also provides
some "badlists" of forbidden substructures (many of them
inspired by the corresponding feature of MOLGEN).

The open-source nature of surge allows for a more
advanced feature. By writing small code snippets, the
user can insert custom filters into any of the three stages,
and also perform such tasks as adding extra elements
and command-line options. Several worked examples are
provided with the program.

Results
Surge is available under a liberal open-source License
(Apache 2.0) on GitHub at https://​struc​tureg​enera​tor.​
github.​io as well as from https://​users.​cecs.​anu.​edu.​au/​
~bdm/​surge/.

The system can be built with the standard Unix Con-
figure/Make scheme and the resulting stand-alone

https://structuregenerator.github.io
https://structuregenerator.github.io
https://users.cecs.anu.edu.au/~bdm/surge/
https://users.cecs.anu.edu.au/~bdm/surge/

Page 7 of 9McKay et al. Journal of Cheminformatics (2022) 14:24 	

executable is then run from the command line. By
default, surge generates all constitutional isomers of
a given molecular formula. Surge can write output in
either SDfile [26] or SMILES [27] format. SMILES out-
put is produced very efficiently by constructing a tem-
plate for each simple graph at the first stage, so that only
atom types and bond multiplicity must be filled in before
output.

We benchmarked surge with the set of molecular for-
mulae given in Table 1. Since our motivation for devel-
oping structure generators is for the generation of large
molecules, Table 1 consists of natural products, randomly
selected from the natural products database COCONUT
[22]. For the list of molecular formulae, surge outper-
formed MOLGEN by orders of magnitude (Fig. 5) and
MOLGEN terminated at a built-in limit of 231–1 struc-
tures. Reported computation times were linearly extrapo-
lated based on the MOLGEN timing for 231–1 structures
and the actual number of isomers reported by surge.
Note that surge generates between 7 and 22 million
molecules per second for all of these examples.
Surge has a tiny memory footprint irrespective of the

molecule size or the number of isomers. All of the exam-
ples in this paper run in at most 5 MB of RAM on Linux
(Fig. 6).

For randomly selected 10 molecular formulae, 4
options of surge were tested and results are given in
Table 2. These options are.

-p0:1 At most one cycle of length 5
-P The molecule is planar
-B5 No atom has two double bonds and otherwise
only hydrogen neighbours
-B9 No atom lies on more than one cycle of length 3
or 4.

Limitations
Release 1.0 of surge does not perform a Hückel aroma-
ticity test and therefore generates duplicate structures for
Kekulé versions of aromatic rings that are graph-theoret-
ically different. Benchmarking against MOLGEN 5.0 was
therefore performed with the -noaromaticity switch of
MOLGEN.

Conclusion
We have presented surge, a structure generator for
constitutional isomers based on the canonical genera-
tion path method. To the best of our knowledge, surge
is the fastest chemical structure generator available.

Fig. 5  Comparison of the run times of surge v1.0 vs MOLGEN 5.0 for long-running molecular formulae from selected natural products, plotted
on a logarithmic time scale. In the majority of cases, MOLGEN terminated at a built-in limit of 231–1 structures. Reported computation times were
linearly extrapolated based on the MOLGEN timing for 231–1 structures and the actual number of isomers reported by surge 

Page 8 of 9McKay et al. Journal of Cheminformatics (2022) 14:24

A number of badlist options are available to avoid the
generation of potentially unlikely structures. Current
limitations include the lack of an aromaticity detection.
Surge is hosted as an open-source package on GitHub,
inviting the scientific community to use and extend it.
Surge offers a plug-in mechanism for community-
driven extensions. Plugins can hook into the various
stages of the surge generation process, thereby offer-
ing efficient means to prune the generation tree.

Author contributions
BDM wrote the code and developed the underlying nauty package. BDM, CS
and MAY conceived the project. BDM and CS guided the development. MAY
contributed to the conceptual development and performed the evaluation
and testing. All authors wrote the manuscript. All authors read and approved
the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. MAY and CS
acknowledge funding by the Carl-Zeiss-Foundation.

Availability of data and materials
Project name: surge
Project home page: https://​struc​tureg​enera​tor.​github.​io
Operating system(s): Platform independent
Programming language: C
License: Apache 2.0

Declarations

Competing interests
All authors declare no competing interests.

Received: 6 December 2021 Accepted: 3 April 2022

References
	1.	 Elyashberg M, Argyropoulos D (2020) Computer assisted structure

elucidation (CASE): current and future perspectives. Magn Reson Chem.
https://​doi.​org/​10.​1002/​mrc.​5115

	2.	 Miyao T, Kaneko H, Funatsu K (2016) Ring system-based chemical graph
generation for de novo molecular design. J Comput Aided Mol Des
30:425–446

	3.	 Saldívar-González FI, Huerta-García CS, Medina-Franco JL (2020)
Chemoinformatics-based enumeration of chemical libraries: a tutorial. J
Cheminform 12:64

	4.	 Blum LC, Reymond J-L (2009) 970 Million druglike small molecules for
virtual screening in the chemical universe database GDB-13. J Am Chem
Soc 131:8732–8733

	5.	 Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J (1993) DENDRAL:
a case study of the first expert system for scientific hypothesis formation.
Artif Intell 61:209–261

	6.	 Gulyaeva KA, Artemieva IL (2020) The ontological approach in organic
chemistry intelligent system development. Advances in Intelligent
Systems and Computing. Springer, Singapore, pp 69–78

Fig. 6  Nine example isomers of the natural product, Istanbulin A with the molecular formula C15H20O4. The molecular structure of Istanbulin A is
given in the 9th entry in the above illustration

https://structuregenerator.github.io
https://doi.org/10.1002/mrc.5115

Page 9 of 9McKay et al. Journal of Cheminformatics (2022) 14:24 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	7.	 Badertscher M, Korytko A, Schulz KP, Madison M, Munk ME, Portmann P
et al (2000) Assemble 2.0: a structure generator. Chemometrics Intellig
Lab Syst. 51:73–79

	8.	 Holt DF, Eick B, O’Brien EA (2005) Handbook of computational group
theory. CRC Press, Boca Raton

	9.	 Kreher DL, Stinson DR (2020) Combinatorial algorithms: generation,
enumeration, and search. CRC Press, Boca Raton

	10.	 Serov VV, Elyashberg ME, Gribov LA (1976) Mathematical synthesis and
analysis of molecular structures. J Mol Struct 31:381–397

	11.	 Molchanova MS, Shcherbukhin VV, Zefirov NS (1996) Computer genera-
tion of molecular structures by the SMOG program. J Chem Inf Comput
Sci 36:888–899

	12.	 Yirik MA, Steinbeck C (2021) Chemical graph generators. PLoS Comput
Biol 17:e1008504

	13.	 Faulon JL (1992) On using graph-equivalent classes for the structure
elucidation of large molecules. J Chem Inf Comput Sci 32:338–348

	14.	 Faulon JL (1994) Stochastic generator of chemical-structure. 1. Applica-
tion to the structure elucidation of large molecules. J Chem Inf Comput
Sci 34:1204–1218

	15.	 Junker J (2011) Theoretical NMR correlations based structure discussion. J
Cheminform 3:27

	16.	 Nuzillard J-M, Georges M (1991) Logic for structure determination. Tetra-
hedron 47:3655–3664

	17.	 Gugisch R, Kerber A, Kohnert A, Laue R, Meringer M, Rücker C, et al. MOL-
GEN 5.0, a Molecular structure generator in advances in mathematical
chemistry. Advances in mathematical chemistry; Basak, SC, Restrepo, G ,
Villaveces, JL, Eds.

	18.	 Grund R, Kerber A, Laue R (1996) Construction of discrete structures,
especially isomers. Discrete Appl Math 67:115–126

	19.	 Grüner T, Laue R, Meringer M (1997) Algorithms for group actions: homo-
morphism principle and orderly generation applied to graphs. DIMACS
Ser Discrete Math Theoret Comput Sci 28:113–122

	20.	 Yirik MA, Sorokina M, Steinbeck C (2021) MAYGEN: an open-source
chemical structure generator for constitutional isomers based on the
orderly generation principle. J Cheminform. https://​doi.​org/​10.​1186/​
s13321-​021-​00529-9

	21.	 Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration
of 166 billion organic small molecules in the chemical universe database
GDB-17. J Chem Inf Model 52:2864–2875

	22.	 Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C (2021) COCO-
NUT online: collection of open natural products database. J Cheminform
13:2

	23.	 McKay BD, Piperno A (2014) Practical graph isomorphism. II J Symb Com-
put 60:94–112

	24.	 McKay B, Piperno A. nauty and Traces User’s Guide. 2019 Sep. https://​palli​
ni.​di.​uniro​ma1.​it/​Guide.​html

	25.	 McKay BD (1998) Isomorph-free exhaustive generation. J Algorithms
26:306–324

	26.	 CTFILE FORMATS BIOVIA DATABASES 2016. 2016. https://​help.​accel​ryson​
line.​com/​ulm/​onelab/​1.0/​conte​nt/​ulm_​pdfs/​direct/​refer​ence/​ctfil​eform​
ats20​16.​pdf

	27.	 Weininger D (1988) SMILES, a chemical language and information system.
1. Introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13321-021-00529-9
https://doi.org/10.1186/s13321-021-00529-9
https://pallini.di.uniroma1.it/Guide.html
https://pallini.di.uniroma1.it/Guide.html
https://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf
https://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf
https://help.accelrysonline.com/ulm/onelab/1.0/content/ulm_pdfs/direct/reference/ctfileformats2016.pdf

	Surge: a fast open-source chemical graph generator
	Abstract
	Introduction
	Implementation
	Data
	Algorithm and mathematical background
	First stage
	Second stage
	Third stage

	Results
	Limitations

	Conclusion
	References

