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Abstract 

Natural products (NPs) are a valuable source for anti-inflammatory drug discovery. However, they are limited by 
the unpredictability of the structures and functions. Therefore, computational and data-driven pre-evaluation 
could enable more efficient NP-inspired drug development. Since NPs possess structural features that differ from 
synthetic compounds, models trained with synthetic compounds may not perform well with NPs. There is also an 
urgent demand for well-curated databases and user-friendly predictive tools. We presented a comprehensive online 
web platform (InflamNat, http://​www.​infla​mnat.​com/ or http://​39.​104.​56.4/) for anti-inflammatory natural product 
research. InflamNat is a database containing the physicochemical properties, cellular anti-inflammatory bioactivities, 
and molecular targets of 1351 NPs that tested on their anti-inflammatory activities. InflamNat provides two machine 
learning-based predictive tools specifically designed for NPs that (a) predict the anti-inflammatory activity of NPs, and 
(b) predict the compound-target relationship for compounds and targets collected in the database but lacking exist-
ing relationship data. A novel multi-tokenization transformer model (MTT) was proposed as the sequential encoder 
for both predictive tools to obtain a high-quality representation of sequential data. The experimental results showed 
that the proposed predictive tools achieved an AUC value of 0.842 and 0.872 in the prediction of anti-inflammatory 
activity and compound-target interactions, respectively.
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Introduction
Inflammation is the response of the immune system to 
pathogen infection and tissue injury caused by physi-
cal or chemical factors, and it is essential for the body’s 
defense against harmful stimuli. However, uncontrolled 
and prolonged inflammation can induce or contribute 
to the occurrence of many diseases, such as autoimmune 
disease, Alzheimer’s disease, cancer, diabetes, and others. 

Natural products (NPs) are an important source for drug 
discovery since they have unique molecular structures 
that differ from synthetic compounds, as well as possess-
ing ideal pharmacokinetic features, with examples from 
historical aspirin (inspired by willow extracts) to recent 
Fingolimod (optimized from myriocin, for multiple scle-
rosis treatment) [1, 2]. As revealed in our previous chem-
informatics study, anti-inflammatory NPs occupy a large 
and diverse structural space, with flavonoids and triter-
penoids being the major types. Although hundreds of 
NPs with cell-based anti-inflammatory activity have been 
reported, more than 2/3 of them have no known targets 
[3]. In-depth research of NP-inspired drug leads was lim-
ited by unmanageable factors during NPs discovery, such 
as structure, quantity, and function. Computational and 
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informatics tools have been applied in many aspects of 
the early phase of drug discovery, such as target identi-
fication, hits screening, and lead optimization [4]. There 
are tens of NP-specific databases currently available in 
bioactive NP research, and several studies have reported 
the use of machine learning algorithms to predict the 
bioactivity or targets of NPs [5].

The applicability domain of a machine learning-based 
bioactivity prediction model is crucial for its perfor-
mance. Since NPs possess different structural features 
from synthetic compounds, models trained with syn-
thetic compounds may not perform well with NPs [6]. 
Therefore, there is still a demand for well-curated data-
bases and user-friendly predictive tools that are opti-
mized for NP-inspired drug discovery.

In this study, we presented the development of a com-
prehensive web-based platform for anti-inflammatory 
NP research that combines a database and predictive 
tools. First, the InflamNat website offered an easy way of 
accessing anti-inflammatory NP information, including 
their structure, physicochemical properties, cell-based 
anti-inflammatory activities, and identified molecular 
targets.

Furthermore, the anti-inflammatory effect of custom-
ized NPs and undiscovered targets of the compounds 
could be predicted using the InflamNat database. Two 
machine learning-based predictive tools were specifi-
cally designed for natural products that (a) predict the 
anti-inflammatory activity of natural products and (b) 
predict the compound-target relationship for the com-
pounds and targets collected in the database but lacking 
existing relationship data. InflamNat used sequence data, 
such as the Simplified Molecular Input Line Entry Sys-
tem (SMILES) of drugs and the amino acid sequences of 
proteins, as inputs to train machine learning-based pre-
dictive tools. Notably, a novel sequence representation 
model Multi-Tokenization Transformer model (MTT) 
was the proposed feature encoder of ML-based predic-
tive tools to produce comprehensive and high-quality 
sequence representation of the compounds (SMILES) 
and proteins (amino acid sequences). Most existing 
sequence representation models [12] employ a tokenized 
method to obtain tokens. In comparison, MTT improves 
the quality of contextualized representation of sequence 
data using multiple tokenizations of sequence data. 
Our anti-inflammatory NP experimental results dem-
onstrated that the proposed tools achieved the desired 
performance.

Methods
Data collection
The InflamNat database was initially composed of 
665 compounds and has since been increased to 1351 

compounds [3]. The structures of NPs and cellular anti-
inflammatory activities were collected from 319 research 
articles published between 2000 and 2020. The struc-
tures were stored as SMILES, canonical SMILES, and 
InChiKey. The names of the compounds were recorded 
as they were in the references, and other synonyms were 
acquired from PubChem and ChEMBL, if applicable [7, 
8]. The following criteria were used for the selection of 
cell-based anti-inflammatory bioassay data: (1) the assays 
were performed in inflammatory cell models (e.g. mac-
rophages); (2) the collected data included not only the 
production of inflammatory factors (nitric oxide (NO), 
PGE2) and cell cytokines (IL-1β, IL-6, IL-12, TNFα) but 
also the cytotoxicity to exclude the effects of cell viability. 
The origin of the NPs represented the organism (genus 
and species) that produced the compounds in the cited 
reference, and “WD” stood for “widely distributed”. The 
targets of InflamNat compounds were collected from 
ChEMBL, which were then filtered to keep only the 
“single protein” type of targets, ensuring that the data 
reflected the direct compound-target interaction.

For the construction of training datasets, the com-
pounds were classified as ACTIVE or INACTIVE based 
on their inhibition of NO production, and compound-
target interaction, using unified criteria: ACTIVE was 
defined as IC50/EC50 < 50  μM, whereas INACTIVE was 
defined as IC50/EC50 > 50 μM.

The complete datasets can be downloaded from the 
home page of the website (Additional files 1, 2, 3, 4). In 
order to avoid being misled, only the ACTIVE targets of 
the compounds are shown in the online database.

Cheminformatic analysis
The general properties of InflamNat compounds, includ-
ing molecular weight (MW), Log (ALogP), topological 
polar surface area (TPSA), the number of hydrogen bond 
donors (#HBD), the number of hydrogen bond acceptors 
(#HBA), and the number of rotatable bonds (#RotB) were 
determined using RDKit [9]. The Bemis-Murcko scaf-
folds were extracted using the ChemMine package with 
the R program [10], with only the largest scaffold retained 
for each compound. Principle component analysis (PCA) 
was performed to investigate the chemical space of the 
InflamNat compounds and around 4000 approved drugs 
collected in DrugBank [11]. Molecular features that were 
used for PCA, including MW, LogP, TPSA, #HBD, #HBA, 
and #RotB, were determined using RDKit.

Multi‑tokenization transformer model
The proposed predictive tools in InflamNat used sequen-
tial data, such as Simplified Molecular Input Line Entry 
System (SMILES) of drugs and the sequence of amino 
acids of proteins to train the ML-based prediction model. 
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Our proposed predictive tools were trained in an end-
to-end learning manner. Therefore, the issue of feature 
representations of the molecule and protein needed to 
be addressed before the development of the prediction 
model.

Although various NLP-inspired representation models 
for molecules and proteins, such as [12, 13], have been 
proposed in recent years to address problems in many 
pharmaceutical and life science applications, the tokens, 
which are the basic unit in sequential models, are typi-
cally pre-specified using a single tokenizer. For example, 
they have considered compound substructures derived 
from the Morgan algorithm for molecules [14], and indi-
vidual AAs for proteins [15]. Notably, there is no standard 
tokenizer for molecules or proteins. Various tokenizers 
can provide different lexical component units with dif-
ferent semantics. Therefore, it was logical to investigate 
whether a sequence representation model integrating 
multiple tokenization could provide a more comprehen-
sive and high-quality sequence representation.

In this study, we presented a novel sequence represen-
tation learning model, the Multi-Tokenization Trans-
former model (MTT), which employs various sequence 

tokenized approaches and multiple transformers [18] to 
obtain a high-quality representation of sequential data. 
Figure  1 displays an overview of MTT. Overall, MTT 
consisted of three modules: multi-tokenization and pre-
training, multi-transformers-based encoder, and tokeni-
zation-level self-attention.

Multi‑tokenization and pre‑training module
Given the drug molecule (or protein) sequence corpus, 
various token sets of the corpus were obtained through 
different tokenizers. Each token set was considered as 
a set of words, then the Word2vec algorithm [17] was 
used for self-supervised pre-training to obtain the token 
embeddings.

Multi‑transformers‑based encoder module
When a new sequence data s was input, different tokeniz-
ers will divide s into tokens. For example, for the input 
SMILES “N=C(N)NCCCC(N)C(=O)O” of the drug, 
various tokenizers deal with the SMILES and produce 
the 1st tokenization “N=C|(N)NCC|CC(N)C(=O)O”, the 
2nd tokenization “N=C|(N)NCC|CC(N)|C(=O)O”, and 
the 3rd tokenization “N=C|(N)N|CC|CC|(N)|C(=O)

Fig. 1  The framework of the multi-tokenization transformer model (MTT) which employs various sequence tokenized approaches and multiple 
transformers to obtain a high-quality representation of sequential data. MTT is composed of three different modules: multi-tokenization and 
pre-training, multiple transformers-based encoder, and tokenization-level self-attention. As a feature encoder, MTT combines the downstream 
prediction model into a unified end-to-end neural network learning framework
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O” (Different tokens are separated by the symbol | in 
tokenization). In specific tokenization, the initial feature 
representation of the tokens was obtained through pre-
training embedding of the tokenization. These initial 
token embeddings were then input into a tokenization-
specific transformer encoder to yield contextualized rep-
resentations through its layers.

Tokenization‑level self‑attention module
Because different tokenization may contribute differently 
to the final predicator, a self-attentive weight was intro-
duced to determine tokenization importance. In particu-
lar, we used a self-attentive mechanism [18] to calculate 
the importance of each tokenization and output the final 
contextualized representation. Specifically, the self-atten-
tive weight was calculated using:

where h
T

′ denotes the contextualized embedding from a 
tokenization-specific transformer. Finally, the final con-
textualized representation is obtained by

It is worth noting that tokenization-level self-attention 
provided an explanation for sequential representation 
because self-attentive weight can be used to indicate the 
importance of different tokenization.

InflamNat used MTT as a feature encoder to provide 
contextualized representations of drug SMILES and pro-
tein sequences.

Prediction models
InflamNat provides two machine learning-based predic-
tive tools specifically designed for natural products that 
(a) predict the anti-inflammatory activity of natural prod-
ucts (AI-A) and (b) predict the compound–target rela-
tionship (C–T) for compounds and targets collected in 
the database but lacking existing relationship data.

AI-A is used to evaluate the anti-inflammatory poten-
tial of a natural product and is considered a binary 
classification that predicts whether a natural product 
compound has anti-inflammatory activity or not. The 
AI-A model uses the SMILES sequence of compound 
molecules as the input and MTT as the encoder to obtain 
the feature representation of compound molecules. An 
MLP is then used as the prediction model to yield the 
prediction result. Cross-entropy was used as the loss 
function for training the model.

C–T can predict the relationship between compounds 
and targets that were collected in the database without 
experimentally verified data. Since the molecular targets 

(1)aT =

exp(MLP(hT ))
∑

T
′ exp

(

MLP
(

h
T

′

))

(2)h =

∑

T
aT hT

of many anti-inflammatory natural products have yet to 
be identified, this tool is useful for in-depth study and 
repurposing of these compounds. The C–T model uses 
both the SMILES sequence of compound molecules and 
the target protein sequence as inputs. In addition, both 
SMILES and protein sequences are tokenized by vari-
ous tokenizers. MTT is then employed as an encoder 
to obtain the feature representations of compounds and 
proteins. The compound and protein representations 
are concatenated into a new feature vector, which is 
then input into an MLP classifier for prediction. Cross-
entropy was used as the loss function of the model.

Results and discussion
Chemical space of InflamNat database
Among the 1351 InflamNat compounds, the largest 
structure class is flavonoid, followed by triterpenoid, and 
diterpenoid (Fig. 2A). As discussed in our previous study, 
these structural classes are most frequently acquired and 
reported in the isolation of natural products. Further-
more, the phenolic hydroxyl groups and aromatic rings in 
flavonoids may contribute to their wide range of bioactiv-
ities by forming intermolecular interactions with protein 

Fig. 2  An overview of the structures in the InflamNat database. A 
The distribution of natural product structure classes. B The top 30 
Bemis-Murcko scaffolds in the database. The number of compounds 
containing the scaffold are labeled in the bottom-right corner



Page 5 of 11Zhang et al. Journal of Cheminformatics           (2022) 14:30 	

targets. Triterpenoids possess a similar structure to ster-
oid hormones, which play important roles in modulating 
immunological reactions [3]. The scaffolds of the NPs 
identified in InflamNat are very diverse (Fig. 2B), ranging 
from simple aromatic natural products with a single ring 
to complicated skeletons with a 5–6 ring system.

The distribution of physicochemical properties of 
InflamNat compounds is shown in Fig.  3A. Accord-
ing to Lipinski’s rule, 60% of the InflamNat compounds 
are drug-like (MW < 500, LogP < 5, #HBD < 5, #HBA < 10 
and#RotB < 10), while 29% have a topological polar sur-
face area (TPSA) < 60, indicating their potential to cross 

Fig. 3  The (A) physicochemical properties and (B) chemical space of InflamNat compounds. MW: molecular weight. TPSA: topological polar 
sur-face area. #HBD: number of hydrogen bond donors, #HBA: number of hydrogen bond acceptors, #RotB: number of rotatable bonds
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the blood–brain barrier (BBB). As shown in Fig.  3B, 
InflamNat compounds cover a similar but smaller chemi-
cal space compared to approved drugs.

Bioactivity overview of InflamNat compounds
The anti-inflammatory activity of InflamNat compounds 
in cells was obtained from the literature. In addition to 
the major indices, such as the inhibitory effect on the 
production of NO, PGE2, IL-1, IL-6, IL-8, and TNFα, 
cytotoxicity data were collected to exclude the effects of 
cell viability on the production of inflammatory factors. 
It was discovered that the inhibition of NO production 
was the most frequently reported data. Notably, NO pro-
duction only represented specific inflammation signaling 
pathways, such as the classical NF-κB pathway, whereas 
other pathways may have different indices, such as IL-1β. 
However, data on the inhibition of the production of 

IL-1β and other inflammatory factors were insufficient 
to develop a machine learning model (Fig.  4A). There-
fore, only the inhibitory activity of NO production was 
selected to train the prediction model of anti-inflamma-
tory activity.

Since the anti-inflammatory effects were sensitive to 
the cellular model, the cell types used in the assays were 
also recorded (Fig.  4B), with the majority of the assays 
performed in mouse macrophage models (including 
RAW264.7 and J774A.1). The mouse microglial cell line 
BV-2 are macrophages residing in the central nervous 
system. The data acquired in macrophages were selected 
for model construction.

Only about 1/3 of InflamNat compounds were pro-
tein targets. The top 100 targets of InflamNat are listed 
in Fig. 4C. The length of the protein names corresponded 
to the frequency with which the protein appeared in 

Fig. 4  An overview of the bioactivities recorded in the database. A The major cellular anti-inflammation indices: cytotoxicity, and inhibition of 
NO, PGE2, and IL-1 production. The number of active and inactive compounds are labeled. B The cell types in which the cellular anti-inflammatory 
activities were measured. C Top 100 molecular targets of InflamNat compounds. The length of the target name corresponds to the number of 
records
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the records. The targets of InflamNat compounds were 
related to a wide range of diseases, including cancer 
(Tyrosyl-DNA Phosphodiesterase 1, TDP1), anti-inflam-
mation (15-Hydroxy-prostaglandin dehydrogenase, 
HPGD), nervous system disease (Amyloid-β, Abeta), 
and diabetes (Protein Tyrosine Phosphatase 1B, PTP1B). 
Enzymes related to drug metabolism, such as the 
cytochrome P450 proteins (CYPs), represented another 
type of target.

Model training and prediction performance evaluation
The machine learning-based predictive tools in Inflam-
Nat, namely AI-A and C-T, were implemented based on 
the open-source machine learning framework Pytorch 
(https://​pytor​ch.​org). The details of model training and 
evaluated results for AI-A and C–T are presented in this 
subsection. Ten-fold cross-validation was used for exper-
imental evaluation, in which experimental datasets were 
divided into ten parts. One part was used as the test data-
set, another was used as the validation dataset, and the 
remaining eight parts were used as the training set. First, 
the training and verification sets were used for training 
and verification, and the test set was used for testing. The 
dataset of each part was used as a test set in turn, and 
the average classification accuracy obtained by ten-fold 
cross-validation was used to evaluate the performance 
of the classifier. In these experiments, all compounds 
adopted canonical SMILES sequence. In this study, the 
receiver operating characteristic curve (ROC curve for 
short) and the AUC value of the area under the curve 
were used to evaluate the prediction performance of the 
proposed model. All experimental tests were carried on 
a Windows 10 operating system with a Dell Precision 
T5820 workstation computer with an intel W-2145 8 
core, 3.7 GHz CPU, and 64 G memory.

Tokenization and pre‑training
A total of 1,938,745 canonical SMILES sequences 
were collected from ChEMBL [8], and 476,715 protein 
sequences from UniProt [19] as a corpus for pre-train-
ing. For SMILES compounds, Byte pair encoding (BPE) 
[20] and Extended-Connectivity Fingerprints (ECFP) 
[14] were used to produce tokens. BPE is a data-driven 
tokenization algorithm that is described in detail in [21]. 
BPE first learns a vocabulary of high-frequency SMILES 
substructure from a large chemical dataset (ChEMBL 
was used in this study), then tokenizes SMILES based 
on the learned vocabulary for the actual training of 
deep learning models. ECFPs are a type of fingerprint 
method that is specifically designed to capture molecu-
lar characteristics associated with the molecular activity. 
In ECFP, all substructures surrounding all heavy atoms 
of a molecule within a defined radius are generated and 

assigned unique identifiers. In our study, radii of 1 and 
2 were used, thus they were called ECFP1 and ECFP2, 
respectively.

Figure 5 displays the statistical results of BPE, ECFP1, 
and ECFP2 tokenization for the collected ChEMBL 
dataset. The mean lengths for BPE, ECFP1, and ECFP2 
tokenization were approximately 6, 22, and 25 tokens, 
respectively. According to the results, different tokeni-
zation methods provided different token sets, which 
resulted in different sequence partition semantics. For 
protein sequences, k-mers [22] and BPE were adopted to 
generate various tokens.

The tokens were considered as “words” and compounds 
(or proteins) as “sentences”. The Word2vec algorithm was 
then applied to the drug (or protein) corpus to obtain 
high-dimensional embeddings of tokens, where the vec-
tors for chemically related tokens occupied the same part 
of vector space. These token embeddings were used as 
the initial feature representation of drugs (or proteins).

Training and evaluation of AI‑A
According to the experimental requirements of a ten-fold 
cross-division, 890 NPs compounds molecular labeled by 
anti-inflammatory activity (represented by 1) and inactiv-
ity (represented by 0) were used to train the MTT-based 
encoder and binary classifier.

After fine adjustment of model parameters, the dimen-
sion of the feature vector was set at 128, the heads of 
attention of the transformer at 6, the layer number of 
transformers at 5, and the learning rate at 0.01. Figure 6 
shows the prediction performance comparison between 
MTT(ECFP) (MTT(ECFP) represents the classifier using 
the MTT encoder and ECFP represents tokenization), 

Fig. 5  Distribution of number of tokens in various tokenized 
canonical SMILES of ChEMBL. The horizontal coordinate represents 
the number of tokens contained in a drug molecule, and the vertical 
coordinate represents the number of drug molecules containing a 
specific number of tokens

https://pytorch.org
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MTT(BPE), and MTT(ECFP + BPE). The results revealed 
that the adoption of multiple tokenizations can improve 
prediction performance. Finally, MTT with AUC 0.8476 
was obtained.

In order to evaluate the effectiveness of MTT with 
multi-tokenization, we compared the prediction perfor-
mance of MTT-based classifier with other methods in 
our NPs classification datasets, such as SA-BiLSTM [12], 
PaDEL-SVM, PaDEL-RF. PaDEL-SVM and PaDEL-RF 
represented prediction methods using PaDEL [23] for 
compound description whereas and SVM and random 
forest as classifier, respectively. The comparison is shown 
in Fig. 7.

Training and evaluation of C–T
The aim of C–T was to predict the interactions between 
the compounds and targets. In this study, C–T was still 
modeled as a binary classification problem to classify the 
given compound-protein pair interaction or not. MTT 
was used as the encoder for both compound SMILES and 
protein sequences. After obtaining the embedding of the 
compound-protein pair, the embedding was input into 
the MLP-based classifier, which produced the final inter-
action score.

A total of 9126 compound-protein pairs labeled “1” 
(means compound-protein interact) or “0” (not inter-
act) were used as datasets for the training prediction 
model. The datasets included 325 compounds and 796 

proteins, with 7164 positive pairs (“1”) and 1962 nega-
tive pairs (“0”).

Ten-fold cross-validation was used to evaluate the 
prediction performance of the C–T model. Specifically, 
10% of both the positive and negative pairs were ran-
domly selected from the positive and negative datasets 
as the test set. The remaining pairs were used as train-
ing sets.

The dimension of the feature vector was set at 128, the 
heads of attention at 4, the layer number of transformers 
at 5, and the learning rate at 0.001. Finally, C–T obtained 
an AUC of 0.8724. Figure  8 shows the comparisons of 
MTT with various encoders. MTT represents the classi-
fier using MTT with ECFP1, ECFP2, and BPE tokeniza-
tion. MTT(BPE) represents the classifier using MTT with 
only BPE tokenization. PreTrain + MLP represents the 
vectors derived by classification using Pretrain do not use 
the Transformer layer for presentation learning. Experi-
mental results show that the adoption of multiple tokeni-
zation can improve prediction performance.

In order to make the compound-target interaction pre-
diction ability of MTT-based prediction tool proposed 
in this paper more convincing, we made experimental 
comparison between MTT and other two recent com-
pound-target interaction prediction methods [24, 25]. 
The comparison results are shown as follows (Fig. 9). The 
experimental results show MTT-based prediction model 
is superior to the compared methods in our released nat-
ural product compound-target interaction dataset.

Fig. 6  A prediction performance comparison of various classifiers 
using different tokenization. MTT(ECFP) represents the classifier using 
MTT with ECFP1 and ECFP2 tokenization. MTT(ECFP + BPE) represents 
the classifier using MTT with ECFP1, ECFP2, and BPE tokenization. 
Exper-imental results show that the adoption of multiple tokenization 
can improve prediction performance

Fig. 7  A prediction performance comparison of our proposed 
meth-od with other predictors. The experimental results show that 
the MTT-based predictor is superior to other baseline methods in 
terms of AUC​
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Website interface
InflamNat (http://​www.​infla​mnat.​com/ or http://​39.​
104.​56.4/) combined one database and two machine 

learning-based predictive tools (Fig.  10). Users can 
search the database using several approaches: (1) provid-
ing the NP structure (SMILES, MOL2, SDF), (2) select-
ing a range of molecular properties, and (3) entering the 
name or ChEMBL ID of target proteins. The retrievable 
data included the basic compound information (Name, 
IUPAC, SMILES, InChiKey, ChEMBL_ID, PubChem_ID, 
compound class, and origin organism), physicochemi-
cal properties (MW, molecular formula, LogP, #HBA, 
#HBD, and #RotB), cell-based anti-inflammatory bioac-
tivity (inhibiting the production of NO, PGE2, IL-1, and 
cytotoxicity), and protein targets (IC50 < 50  μM). The 
NP-target network can be visualized by downloading the 
complete dataset (including negative NP-target interac-
tion data) via the links on the home page. The database 
will be updated annually to expand the number of anti-
inflammatory compounds.

Furthermore, users can predict the anti-inflammatory 
activity of natural products by uploading their structures. 
The results will be sent via e-mail and presented as the 
probability of having an IC50 (inhibition of NO produc-
tion in macrophages) < 50 μM. For InflamNat compounds 
and targets that are collected in the database but lack 
existing relationship data, one can predict the relation-
ship of the given compound and target, as well as retrieve 
all the potential targets for a specific compound.

Conclusion 
Machine learning is a valuable tool for drug develop-
ment. However, the application of ML in the discovery of 
bioactive NPs has been limited by the lack of well-curated 
databases and user-friendly tools for chemists and phar-
macologists. InflamNat aimed to support the discovery of 
NP-inspired anti-inflammatory drug leads via informat-
ics approaches, including database and online predictive 
tools. This platform integrated the knowledge of physico-
chemical properties, cellular anti-inflammatory bioactivi-
ties, and molecular targets. This study was expected to 
promote the development of easily accessible informatics 
sources for NP-derived drug therapy in the treatment of 
other diseases, such as neurological diseases and cardio-
vascular diseases.

Nevertheless, the InflamNat platform still requires 
further improvements based on more readily available 
and robust experimental data. NO production is only 
associated with specific inflammation cell pathways, 
such as NF-κB, whereas different inflammatory diseases 
may involve other signaling pathways that are not char-
acterized by NO levels but by other chemokines and 
cytokines. Therefore, predictive models based on pro-
inflammatory factors other than NO should be stud-
ied in the future to cover a wide range of inflammatory 

Fig. 8  A prediction performance comparison of MTT with various 
encoders. The experimental results show that the performance 
of MTT-based predictor can be improved by adopting of multiple 
tokenization

Fig. 9  Prediction performance comparison of our proposed 
method with other predictors. The MTT-based prediction model was 
compared with two recently proposed compound-target interaction 
models in our released natural product compound-target interaction 
dataset. DeepPurpose(CNN, CNN) represents the prediction model 
in [24] with a Convolutional neural network as feature encoders both 
for compounds and proteins. Other DeepPurpose symbols were 
interpreted similarly. Ten-fold cross-validation was used to evaluate 
the prediction performance of the various compared C–T models

http://www.inflamnat.com/
http://39.104.56.4/
http://39.104.56.4/
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conditions. It remains a challenge due to the lack of 
high-quality and adequate amount of data, especially 
for NPs. In this case, techniques, such as transfer learn-
ing, would be sufficient for treating limited datasets.
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