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Abstract 

UDP-glucuronosyltransferases (UGTs) have gained increasing attention as they play important roles in the phase II 
metabolism of drugs. Due to the time-consuming process and high cost of experimental approaches to identify the 
metabolic fate of UGT enzymes, in silico methods have been developed to predict the UGT-mediated metabolism 
of drug-like molecules. We developed consensus models with the combination of machine learning (ML) and graph 
neural network (GNN) methods to predict if a drug-like molecule is a potential UGT substrate, and then we applied 
the Weisfeiler-Lehman Network (WLN) model to identify the sites of metabolism (SOMs) of UGT-catalyzed substrates. 
For the substrate model, the accuracy of the single substrate prediction model on the test set could reach to 0.835. 
Compared with the single estimators, the consensus models are more stable and have better generalization ability, 
and the accuracy on the test set reached to 0.851. For the SOM model, the top-1 accuracy of the SOM model on the 
test set reached to 0.898, outperforming existing works. Thus, in this study, we proposed a computational framework, 
named Meta-UGT, which would provide a useful tool for the prediction and optimization of metabolic profiles and 
drug design.
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Introduction
Metabolism plays a vital role in drug development, as 
it is one of the main clearance pathways for approxi-
mately 75% of existing drugs [1]. Metabolism can pro-
duce metabolites with different physical and chemical 
properties from the parent drug, which has an important 
impact on the safety and efficacy of the drug [2]. UDP-
glucuronosyltransferases (UGTs) are the most important 
Phase II drug-metabolizing enzymes, including 22 mem-
bers in mammals. They are classified into four subfami-
lies: UGT1, UGT2, UGT3, and UGT8 [3]. UGTs catalyze 
the conjugation of parent drugs containing a nucleophilic 
atom (aliphatic, aromatic hydroxyl, carboxyl, or amino 
groups) with glucuronic acid (Fig. 1), according to a sec-
ond-order nucleophilic substitution mechanism [4].

About 15% of drugs are metabolized by UGTs [5]. Most 
of them are transformed into hydrophilic metabolites by 
UGTs for excretion. Glucuronidation can not only lead to 
detoxification but also cause the drug to act for a short 
time and lose its activity. Moreover, glucuronidation can 
result in the formation of more active metabolites than 
the parent drug, for instance, morphine produces mor-
phine-6-glucuronide which is more potent than the par-
ent drug through glucuronidation [6]. Taken together, 
determining the metabolites of UGT enzyme metabolism 
can help improve the metabolic properties of the drug. 
Experimental methods can help to explore the meta-
bolic fate of drugs. Unfortunately, these experimental 
approaches have high requirements for time, equipment, 
manpower, and resources [7]. Therefore, computer-
based methods for predicting the metabolic fate of UGT 
enzymes were promoted.

There were some methods developed for the predic-
tion of sites of metabolism (SOM), and they used differ-
ent features to describe the molecular environment. Peng 
et al. [8] calculated and selected molecular descriptors of 
atom reactivity, bonding strength, and physical–chemical 
properties via a genetic algorithm-based feature selec-
tion approach to predict sites of glucuronidation. In our 
previous work, Cai et al. used atom environment finger-
prints which represent the potential site in a molecule 
to predict the site of metabolism (SOM) for UGT-cata-
lyzed reactions [9]. The above two methods need to find 
out all potential sites of metabolism (SOMs) and then 
mark whether they are SOMs. Rudik et  al. developed 
and applied a method—SOMP [10], which was based 
on LMNA descriptors and the PASS algorithm to pre-
dict sites of metabolism. This method needs to calculate 
descriptors by the PASS algorithm. Dang et al. computed 
a vector of topological, molecule, quantum chemical, and 
statistical descriptors to represent each atom in a mol-
ecule [11]. Their methods need to calculate technically 
complex quantum-chemical-derived descriptors. All of 
them only built a model to predict the site of metabolism 
but did not consider if the molecule was the substrate of 
UGT enzymes. Most of these methods need to calculate 
complex descriptors by other tools to predict the SOM 
for UGT-catalyzed reactions. Meanwhile, we found that 
most of these models were built on the substrates data, 
and some nonsubstrates fell outside the applicability 
domain of SOM model. Thus, the substrate/nonsubstrate 
prediction model can improve the performance on non-
substrates. If a molecule is not the substrate of UGTs, it is 
not necessary to predict SOM. Therefore, it is necessary 
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to build a model which can predict if a molecule is the 
substrate of the UGT enzyme and then predict the SOM 
of the substrate.

Molecular representation is a vital point in metabolic 
prediction. Molecules were often presented as physico-
chemical descriptors or fingerprints. Recently, graphs 
were used to describe molecular structures; atoms were 
represented as nodes, and bonds were represented as 
edges [12, 13]. In fact, graph theory has been applied to 
solve many chemical questions including the representa-
tion of chemical reactions. Duvenaud et al. used graphs 
to represent molecules in chemistry by developing neu-
ral fingerprints [14]. Convolution operation rather than 
hashing function was used to assemble features of neigh-
boring nodes. Kearnes et al. described a molecular graph 
convolutions architecture for learning from small mole-
cules [15]. They proposed that the model will take greater 
advantage of the information in the graph convolution 
method than fingerprint-based methods which focus 

on particular aspects of the molecular structure. They 
expected the graph convolution method could have bet-
ter performance than fingerprint-based methods through 
optimizations. Coley et  al. developed a novel approach 
based on Weisfeiler-Lehman Network (WLN) to pre-
dict chemical reactivity [16]. The Weisfeiler-Lehman 
kernel [17] could capture graph transformation of reac-
tions. Thus, given reactants and reagents of the organic 
reactions, the WLN model could predict the products by 
learning to identify possible reactive sites.

In this work, there are two objectives: (1) to accurately 
predict if a molecule is the substrate of UGT enzymes, 
and (2) to predict where the SOMs are located, i.e., to 
identify the specific site within the substrate that is 
metabolized by UGTs. We first applied the combination 
of fingerprint-based and physicochemical descriptors-
based ML methods and the GNN methods to predict if 
the molecule is a substrate of UGT. The WLN method 
was applied to predict potential SOM in the substrate. 

Fig. 1  Four types of UGT catalyzed reactions. A O-Glucuronidation; B N-Glucuronidation; C S-Glucuronidation; D C-Glucuronidation
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The model scored the reactivity between atom pairs and 
predicted the site of metabolism. The GNN methods 
need not calculate complex quantum chemical descrip-
tors by other descriptors programs. It was the first time 
to use the graph method in the prediction of SOM. In this 
study, we proposed a computational framework, named 
Meta-UGT, to predict the substrate of UGT enzymes and 
their SOMs.

Materials and methods
Data collection and preparation
All the substrate/nonsubstrate data of UGT enzymes 
were collected from publications (listed at https://​github.​
com/​mengt​inghu​ang/​Meta-​UGT). If a compound is 
determined to be metabolized by UGT enzymes as it has 
the glucuronidation metabolites, we labeled it as “sub-
strate”. All chemical structures were saved as Simplified 
Molecular Input Line System (SMILES) String. The data-
set was randomly split into training and test sets (8:2).

All the UGT-catalyzed reactions were collected from 
literature and most of the data were retrieved from Lee’s 
Handbook of Metabolic Pathways of Xenobiotics by 
Cai et al. [9]. All four types of UGT catalyzed reactions 
as shown in Fig. 1 were collected were aimed to build a 
global SOM model However, we found that there are very 
few data on S-Glucuronidation and C-Glucuronidation. 
Therefore, we only considered O-Glucuronidation and 
N-Glucuronidation here. All SOMs were classified into 
four types of substructure groups, These groups were 
aliphatic hydroxyls (AlOH), aromatic hydroxyls (ArOH), 
carboxylic acids (COOH), and nitrogen containing sites 
(Nitrogen). Each reaction datum was restored as reaction 
SMILES including the information of reactants and prod-
ucts as shown in Table 1. The dataset was randomly split 
into training, validation, and test sets (8:1:1). Metabolic 

reactions with the same reactant, but different metabo-
lites were split in the same set.

For the SOM prediction model, we should preprocess 
the data before building the WLN model. All the reac-
tions were saved as SMIRKS, and then we added a map 
for the SMIRKS by RDT software [18]. The data preproc-
essing steps were shown in Table 1. The SMIRKS include 
reactants and metabolites, and they are split by ‘>>’. If the 
reaction has two or more reactants, they will split by ‘.’. 
In order to add the map successfully for the SMIRKS, the 
reaction equation needs to be balanced. The mechanism 
of glucuronidation was shown in Additional file  1: Fig. 
S1. Under the action of UDP-glucuronosyltransferases, 
the nucleophilic substrate will attack the glucuronic acid, 
and release one molecule of Glucuronide conjugate and 
one molecule of UDP. In order to reduce the complexity 
of prediction, we do not take the effect of uridine diphos-
phate into consideration as each glucuronidation reac-
tion will release one.

Calculation of molecular fingerprints and physicochemical 
descriptors and definition of graph features
Five types of fingerprints that have been widely used in 
QSAR modeling were used to characterize compounds, 
and they were generated by the open-source toolkit 
RDKit (version 2018.09.3.0) [19] (http://​www.​rdkit.​org/): 
(I) AtomPairs (512, 1024, 2048 bits); (II) MACCS (166 
bits); (III) Morgan (512, 1024, 2048 bits); (IV) Topologi-
cal Torsions (TopoTorsion, 512, 1024, 2048 bits); and 
(V) RDKit (512, 1024, 2048 bits). These fingerprints 
were used to build traditional ML models. For Atom-
Pairs, Morgan, TopoTorsion, and RDKit fingerprints, 
we tried three different bit lengths (512, 1024, 2048 
bits) and then chose the best one for molecular repre-
sentation. The radius of Morgan fingerprints was the 
default (radius = 2). We also tried to use the physical and 

Table 1  Data preparation steps for the SOM model

Step Example: reactants >> metabolites

Reaction

 

Original SMIRKS O=C(C1=CC(Br)=CC(Br)=C1N)O.O=C(C2OCC(C(C2O)O)O)O >> BrC3=CC(Br)=C(C(C(OC4OC(C(O)C(O)C4O)C(O)=O)=O)=C3)
N

Atom-Mapping SMIRKS [O:1]=[C:2]([OH:3])[C:4]1=[CH:5][C:6]([Br:7])=[CH:8][C:9]([Br:10])=[C:11]1[NH2:12].[O:13]=[C:14]([OH:15])[CH:16]1[O:17]
[CH*:18][CH:19]([OH:20])[CH:21]([OH:22])[CH:23]1[OH:24] >> [Br:7][C:6]1=[CH:8][C:9]([Br:10])=[C:11]([NH2:12])[C:4]([C:2]([O:3]
[CH:18]2[O:17][CH:16]([C:14]([OH:15])=[O:13])[CH:23]([CH:21]([CH:19]2[OH:20])[OH:22])[OH:24])=[O:1])=[CH:5]1

https://github.com/mengtinghuang/Meta-UGT
https://github.com/mengtinghuang/Meta-UGT
http://www.rdkit.org/
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chemical descriptors to build traditional ML models. 729 
physical and chemical descriptors were calculated by the 
PaDEL-Descriptor software [20].

We used different GNN methods to construct the sub-
strate prediction models and SOM model. The molecular 
graph was considered as the input of models. We need to 
define the molecular features in advance as the atoms are 
represented as nodes and the bonds are represented as 
the edges. The definition of the atom and bond features 
was shown in the supporting information (Additional 
file  1: Tables S1–S6). We feed the model with SMILES, 
and then the model will transform the structure into one-
hot encoding by the definition. In this way, any descrip-
tors did not need to be calculated by other tools.

Model construction
Model for substrate/nonsubstrate classification
Five traditional ML methods and five GNN methods 
were used to construct substrate prediction models. The 
traditional ML methods include random forest (RF), 
support vector machine (SVM), logistic regression (LR), 
neural network (NN), and extremely randomized trees 
(ET), while the GNN methods are graph convolutional 
networks (GCN), graph attention networks (GAT), weave 
(Weave), message passing neural network (MPNN), and 
attentive FP networks (Attentive FP).

Traditional ML methods  RF refers to a special bagging 
method that fits several decision tree classifiers on vari-
ous sub-samples of the dataset, and it uses averaging to 
improve the predictive accuracy and avoid over-fitting 
[21]. SVM is a class of generalized linear classifiers that 
perform binary classification of data in a supervised learn-
ing method. Its decision boundary is the maximum mar-
gin hyperplane that is solved for the learning sample [22]. 
LR is a linear model for classification instead of regression. 
Logistic regression is also known in the literature as logit 
regression, maximum-entropy classification (MaxEnt), or 
the log-linear classifier [23]. Inspired by biological nerves, 
people invented artificial NN based on Multi-Layer Per-
ceptron (MLP), which is a supervised learning algorithm 
that learns optimal parameters by training on a dataset. 
Geurts et  al. proposed ET for supervised classification 
problems [24]. It constructs completely randomized trees 
whose structure is not affected by the output value of the 
learning sample.

Graph Convolutional Networks (GCN) and Graph Atten‑
tion Networks (GAT)  For GNN methods, the forward 
pass has two stages: one is "Message Passing" and the 
other is "Readout". These GNN methods can be used for 
substrate classification based on graphs rather than fin-

gerprints. Atom represents a node. After updating node 
representations by adjacent atoms, this method performs 
a weighted sum with learnable weights and max-pooling 
layer and concatenates the output of the two operations, 
which is then fed into an MLP for final prediction. For the 
GAT, the attention mechanism is employed to update the 
node representations on the basis of the GCN.

Weave and Message Passing Neural Network (MPNN)  A 
node represents an atom, and an edge represents a bond. 
Not only the impact of the node but also the edge is con-
sidered by the two methods to generate molecule-level 
features. The weave used a method similar to histograms 
to replace the operations of sum, mean, and max to model 
the distribution of data in each dimension [15]. Message 
Passing Neural Networks (MPNN) reformulated some 
existing models into a single common framework and 
explore additional novel variations within this framework.

Attentive FP networks [25]  Atom features and bond 
features were both used to build the Attentive FP model. 
Attentive FP can effectively capture the non-local features 
of the graph and the interaction of distant nodes while 
maintaining the inherent structure of the molecule. This is 
because Attentive FP firstly adds the attention mechanism 
at the atomic level to learn the local characteristics of the 
molecule, and then adds the attention mechanism at the 
entire molecular level to learn the global characteristics of 
the molecule.

Consensus models  According to the performance of ten-
fold cross-validation, we would select the top-10 models to 
build consensus models. We combined n models from the 
top-10 models to construct consensus models (n = 2, 3, 4, 5, 
6, 7, 8, 9, 10). Finally, we totally built 1023 consensus models 
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The consensus models were built by the soft voting strat-
egy. The final output was determined by the average value 
of probability from all single models. If the average prob-
ability ≥ 0.5, the samples were predicted as the substrate 
of UGT.

Model for SOM prediction
In the prediction model for SOM, we applied the frame-
work of the organic reaction prediction method devel-
oped by Coley for metabolic prediction [16].

Weisfeiler‑Lehman Networks (WLN)  The UGT-cata-
lyzed reaction is considered as a set of graph edits where 
the edge between the node of the drug and the node of the 
glucuronic acid is changed. The key to the success of the 
prediction is to learn a representation of the molecules 
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Fig. 2  The workflow of the WLN approach to predict SOMs of UGT enzyme. A Graph representation of molecules; B WLN model for predicting the 
possible site of metabolism by calculating reactivity scores; C the visualization of the reactivity scores of possible sites
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that captures properties relevant to the atom environ-
ment. As shown in Fig. 2A, we feed the WLN model with 
atom-mapping reaction SMIRKS. It was worth mention-
ing that the nonsubstrates could not generate SMIRKS, so 
the WLN model was based on the data of substrates. The 
model will extract the information of the atoms and bonds 
which were described as nodes and edges. Node descrip-
tors including atom type, atom degree, atom explicit 
valence, atom implicit valence, and aromaticity and edge 
descriptors including bond type, whether the bond is con-
jugated, and whether the bond is in-ring were considered. 
The definitions of all the atom and bond features in this 
work are available in the supporting information (Addi-
tional file 1: Table S5 and S6). The process of iteratively 
updating atom-level representations is shown in Fig. 2B. 
Firstly, the information of the center atom (“a”), adjacent 
atoms (“b”, “c”, “d”), and bonds (“ab”, “ac”, “ad”) is merged 
by a parameterized neural network to generate new atom 
features for the center atom “a”, and this process may be 
iterated several times. Next, the new atomic features and 
their neighbors’ updated features will be used to calcu-
late the local features of the atom. In order to consider the 
effect of other molecules, a global attention mechanism is 
added to this model to produce a context vector for each 
atom [26]. Finally, a combination of local features and 
global features is used to predict the possibility of the site 
of metabolism of UGT enzymes. As shown in Fig. 2C, the 
WLN model will learn the local features and global fea-
tures to calculate the reactivity scores of possible SOMs 
of UGT enzymes. The reactivity score is higher, the site 
is more likely to happen glucuronidation. When we know 
the site of metabolism, we can know the metabolite of 
the UGT enzymes as the mechanism of glucuronidation 
shown in Additional file 1: Fig. S1.

Tuning parameters and early stopping for GNN models
The parameters of GNN models can be divided into two 
categories: model parameters and hyperparameters. 
Model parameters are updated by the gradient descent 
algorithm during training. GNN methods mentioned 
were trained with the PyTorch framework and the model 
parameters were updated by Adam optimizer for gradi-
ent descent optimization. Hyperparameters are generally 
fixed values or changed according to preset rules during 
training, such as batch size, learning rate, weight decay, 
etc. There are some tuning methods such as grid search, 
random search, and Bayesian optimizations, which are 
commonly used algorithms. We used Bayesian optimi-
zation to obtain the best hyperparameters for the GNN 
methods [27]. BCEWithLogitsLoss which measures 
cross-entropy as loss functions were employed for the 
classification tasks.

In order to avoid overfitting and save training time 
and training resources, early stopping [28] was used in 
the substrate prediction model based on GNN methods. 
When using Bayesian optimization to search for hyper-
parameters, a training process is required to obtain the 
best performance. In this training process, we set a maxi-
mum epoch of 500, and if the performance metric had 
not improved in 10 epochs on the training set and in 15 
epochs on the validation set, the training process was ter-
minated early. All of the GNN models were trained until 
the performance improvement had converged.

Evaluation of model performance
In our substrate classification task, the classification 
accuracy (ACC), sensitivity (SE), specificity (SP), Mat-
thews correlation coefficient (MCC), and area under 
the curve (AUC) were employed to evaluate the perfor-
mance of a classifier with tenfold cross-validation. These 
metrics are calculated based on true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN). 
The first four metrics were calculated using the following 
equations:

For the SOM model, we calculated the AUC, MCC and 
“Top-k” metrics to evaluate. Let f̂i,j be the j-th predictive 
result for the i-th molecule, yi be the actual value, and 
nsamples be the number of substrates, the top-k accuracy 
can be written as:

A substrate was considered to be correctly predicted 
if any of its experimentally observed sites of metabo-
lism were predicted in the top k rank positions out of all 
potential sites in the substrate.

Comparison with existing models
Several known models can predict the SOMs of the mol-
ecule by UGTs. We compared our model with SOMP 

(1)ACC =
TP + TN

TP + TN + FP + FN

(2)SE =
TP

TP + FN

(3)SP =
TN

TN + FP

(4)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(5)

Top− kaccuracy
(
y, f̂

)
=

1

nsamples

nsamples−1∑

i=0

k∑

j=1

1(f̂i,j = yi)
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[10] (http://​www.​way2d​rug.​com/​SOMP), FAME3 [29] 
(https://​nerdd.​univie.​ac.​at/​fame3/) and XenoSite [11] 
(https://​swami.​wustl.​edu/​xenos​ite) on the same test set. 
We input the test set to the above web servers and then 
got the predictive results. We also compared our present 
work with our previous work completed by Cai et al. [9]. 
We compared our model with Cai’s global model whose 
method combination included the AdaBoost classifier 
without the resampling operation and 255 components 
for the PCA method.

Results
Data set analysis
A total of 1248 data were collected, including 643 sub-
strate data and 605 nonsubstrate data. The substrate was 
labeled as a positive compound labeled as “1”, and the 
nonsubstrate was considered as a negative compound 
labeled as “0”. In order to verify the reliability of the data, 
y-Randomization [30] was applied to randomize the label 

(“0” or “1”) of the data and to see if they can obtain mod-
els. We can find the randomized model is worse than 
the original model as shown in Additional file 1: Fig. S2, 
which indicated our data is reliable. Altogether 652 UGT-
catalyzed reactions were collected from literature and 
all the reactions were saved as SMIRKS. 536 SMIRKS 
were split as a training set to train the WLN model, 57 
SMIRKS were split as a validation set to select the best 
model and 59 SMIRKS were split as a test set to evaluate 
the best model.

As shown in Fig.  3, we used two-dimensional prin-
cipal component analysis (PCA) based on the Morgan 
fingerprint to explore the chemical space distribution 
of the different datasets. We calculated the Tanimoto 
coefficient based on the Morgan fingerprint[31] to cal-
culate the similarity of our collected data to further 
explore the chemical diversity. As shown in Fig.  3A 
and C, we performed PCA analysis of substrate/non-
substrate data and SOM data, respectively. In general, 

Fig. 3  The chemical space of the data. A PCA analysis of substrate and nonsubstrate data based on Morgan fingerprints; B Tanimoto similarity of 
the substrate and nonsubstrate data based on Morgan fingerprints; C PCA analysis of the data for SOM model based on Morgan fingerprints; D 
Tanimoto similarity of the data for SOM model based on Morgan fingerprints

http://www.way2drug.com/SOMP
https://nerdd.univie.ac.at/fame3/
https://swami.wustl.edu/xenosite
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the distribution of all test set and validation set was 
roughly within the scope of the chemical space of the 
training set, which indicated that our model could pre-
dict the structure of the test set. We also calculated the 
Tanimoto similarity among training set and test set for 
the substrate/nonsubstrate model and SOM model as 
shown in Additional file 1: Fig. S3. As shown in Addi-
tional file  1: Fig. S3A and B, most of the data in the 
test set had similar data in the training set. Moreover, 
the average value overall maximum Tanimoto similari-
ties between the data in test set and training set was 
0.561 for the substrate model and 0.541 for the SOM 
model, which further supported the conclusion that 
our model could predict the structures of the test set. 
Histograms of frequency distribution of similarity for 
chemicals of the substrate/nonsubstrate model and 
SOM model were shown in Fig.  3B and D. As shown 
in Fig.  3B and D, the Tanimoto similarity between 

compounds was mostly distributed between 0 and 0.4. 
The average Tanimoto similarity of the substrate and 
nonsubstrate data set was 0.123 and the average Tani-
moto similarity of the substance with known metabolic 
sites by UGT enzymes was 0.110, which indicated that 
compounds used in our research were obviously struc-
turally diverse.

Performance of the substrate prediction model
Performance of tenfold cross‑validation
Five traditional ML methods combined with five fin-
gerprints and physicochemical descriptors were used to 
predict if the drug is the substrate of UGT enzymes. We 
performed a tenfold cross-validation and grid search to 
find the best parameters and the optimal traditional ML 
model. Some important parameters for the traditional 
ML model were optimized. Grid search was applied to 
find the best parameters, while not every parameter 

Fig. 4  The AUC value of five machine learning methods (SVM, RF, NN, LR, ET) in different bits (512, 1024, and 2048 bits) of four types of molecular 
fingerprints (AtomPairs, Morgan, RDKit, and TopoTorsion) in tenfold cross-validation for the substrate prediction model
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was tuned. We tuned the parameters based on prior 
published work [32]. The GNN model search for hyper-
parameters through Bayesian optimization on train-
ing data. The list of parameters that were tuned for the 
traditional ML models was showed in Additional file  1: 
Table  S7. The tuned parameters of each traditional ML 
model were displayed in Additional file 1: Table S8, and 
the tuned parameters of each GNN model were listed in 
Table S9. The performance of the training set was listed 
in Table  S10. The performance of the tenfold cross-val-
idation was shown in Figs. 4 and 5. As shown in perfor-
mance of training set and tenfold cross-validation, we 
found that the model was not overfitting and had good 
robustness.

The MACCS fingerprint was fixed at 166 bits, but the 
other four fingerprints had different sizes. The results of 
AUC in 512, 1024, and 2048 bits were shown in Fig.  4. 
Overall, the fingerprints of 512 bits are not as good as 
fingerprints of 1024 and 2048 bits except for the Morgan 
fingerprint. The AtomPairs and Morgan fingerprints had 
better performance than RDKit and Topological Tor-
sions fingerprints. Morgan fingerprint performed best 
among the four molecular fingerprints. It turned out that 

random forest and extreme trees models performed well, 
which are both tree-based ensemble models.

According to the performance of tenfold cross-val-
idation, we selected the top-10 models based on the 
value of MCC, which were shown in Fig. 5. The perfor-
mance of other models was shown in Additional file  1: 
Table S11, and the MCC values for all models were dis-
tributed between 0.320 and 0.678, which indicated a large 

Fig. 5  The performance of the top-10 models selected from tenfold cross-validation for the substrate prediction model. (Methods name includes 
the type of features and type of machine learning methods.)

Table 2  The performance of the top-10 models in the test 
dataset for the substrate prediction model

Model ACC​ SP SE AUC​ MCC

Descriptor_ET 0.815 0.736 0.891 0.883 0.628

Descriptor_RF 0.811 0.760 0.859 0.889 0.616

MACCS_ET 0.815 0.769 0.859 0.859 0.616

Descriptor_SVM 0.811 0.744 0.875 0.882 0.633

MACCS_RF 0.807 0.727 0.883 0.864 0.619

Descriptor_LR 0.795 0.744 0.844 0.877 0.591

MACCS_NN 0.807 0.760 0.852 0.870 0.615

AttentiveFP_attentivefp 0.823 0.785 0.859 0.877 0.647

MACCS_SVM 0.803 0.744 0.859 0.850 0.608

Morgan_ET_1024 0.807 0.727 0.883 0.878 0.619
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variance in model performance. As shown in Fig.  5, we 
found that the models based on MACCS fingerprint and 
physicochemical descriptors had better performance. All 
the top-10 models have good predictive performance, 
and the average AUC values were above 0.88. The top-3 
models were Descriptor_ET (MCC = 0.678, AUC = 0.905, 
ACC = 0.837, SE = 0.865, SP = 0.807), Descrip-
tor_RF (MCC = 0.673, AUC = 0.907, ACC = 0.835, 
SE = 0.858, SP = 0.811), and MACCS_ET (MCC = 0.665, 
AUC = 0.888, ACC = 0.832, SE = 0.850, SP = 0.812).

Performance of test set
In order to further explore the performance of the mod-
els, we trained traditional ML models and GNN models 
to obtain the optimal model through the performance 
of tenfold cross-validation and then predicted the 
results on the test dataset to evaluate these models. The 
performance of the top-10 models in the test dataset 
was listed in Table  2 and the results of the remaining 
models were listed in Additional file 1: Table S12, and 
as the results shown, all the models had good generali-
zation ability on the test set. The performance of top_3 
models based on tenfold cross-validation in the test 
set were Descriptor_ET (MCC = 0.628, AUC = 0.883, 
ACC = 0.815, SE = 0.891, SP = 0.736), Descriptor_RF 
(MCC = 0.616, AUC = 0.889, ACC = 0.811, SE = 0.859, 
SP = 0.760), and MACCS_ET (MCC = 0.616, 
AUC = 0.859, ACC = 0.815, SE = 0.859, SP = 0.769), 
respectively. As shown in Table  2, the top-10 models 
had good generalization ability in the test set, and the 
AUC values of the top-10 models in the test set were 
also above 0.85.

Performance of consensus models
In order to improve the stability and robustness, we built 
consensus models. According to the performance of ten-
fold cross-validation, we selected the top-10 models as 
shown in Fig. 5. We combined n models from the top-10 
models to construct consensus models and totally built 
1023 consensus models. According to the value of MCC 
in the test set, we selected the top-3 consensus models 
which were listed in Table 3. The top-1 consensus model 
was the model combined Descriptor_SVM, Descriptor_
ET, MACCS_RF, AttentiveFP_attentivefp and Morgan_
ET_1024. Compared with the single model as shown in 
Table 2, the top-1 consensus model had a better perfor-
mance (MCC = 0.682, AUC = 0.898).

In order to further explore the justifiability of the con-
sensus model, we tried to build consensus model only 
with traditional ML model or GNNs. The best consensus 
model built only with traditional ML models was com-
bined Descriptor_SVM, MACCS_RF, MACCS_SVM, 

and Morgan_ET_1024. The best consensus model 
built only with traditional ML models (AUC = 0.886, 
MCC = 0.674) performed better than the best single 
model (AUC = 0.883, MCC = 0.628), while performed 
worse than the top-1 consensus model (AUC = 0.898, 
MCC = 0.682), and the model spent 0.67 s in predicting 
the test set on 64 CPUs. The best consensus model built 
only with GNNs models was combined with MPNN_
canonical and AttentiveFP_attentivefp (AUC = 0.877, 
MCC = 0.633), which even performed worse than the 
best single GNN model (AUC = 0.877, MCC = 0.647), 
and the model spent 17.37 s in predicting the test set on 
64 CPUs.

Interestingly, consensus model which combined 
traditional ML models and GNNs (AUC = 0.898, 
MCC = 0.682) can improve the performance than the 
best consensus model built only by traditional ML mod-
els (AUC = 0.886, MCC = 0.674) or GNNs. Finally, we 
chose the top-1 consensus model (shown in Table  2) as 
the substrate prediction model. The top-10 models spent 
0.06–5.26 s in predicting the test set on 64 CPUs, while 
the top-1 consensus model spent 9.54 s.

Performance of the SOM prediction model
We applied the WLN model which is a GNN method 
developed by Coley to predict the SOMs of the UGT 
enzymes.

Various iterations and data size
For the SOM prediction model, we tuned the param-
eters including the batch size, learning rate, and itera-
tion layers by gird searching. As shown in Fig.  6, we 

Table 3  The results of different consensus models in the test 
dataset for the substrate prediction model

No Consensus models AUC​ MCC

1 Descriptor_SVM 0.898 0.682

Descriptor_ET

MACCS_RF

AttentiveFP_attentivefp

Morgan_ET_1024

2 MACCS_ET 0.886 0.682

Descriptor_SVM

MACCS_RF

AttentiveFP_attentivefp

3 Descriptor_ET 0.897 0.674

Descriptor_RF

MACCS_ET

MACCS_RF

AttentiveFP_attentivefp

Morgan_ET_1024
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trained our model in different iterations, learning rates, 
and batch sizes to find optimal parameters and the opti-
mal model. As shown in Fig. 6A, we trained our model 
in different iterations to obtain new atom features. We 
found that the model would get better results when 
iteration times were one. What we can see in Fig. 6B is 
that the learning rate has a great impact on the model 
performance. We set the learning rate to 0.0001, 0.0003, 
0.001, and 0.003, which were the common values of the 
learning rate. Meanwhile, because our data size is not 
big, we did not consider the big batch size and we set 
the batch size to 10, 16, 20, 32, and 64. From the per-
spective of the learning rate, when the learning rate is 
set to 0.0001, the model performs the worst. We found 
that the model would get a better result when the learn-
ing rate was set to 0.001 and the batch size was set to 

20. As shown in Fig. 6C, we trained our model in differ-
ent data sizes. When the training set data was only as 
small as 50, the result of top-1 accuracy can still reach 
more than 0.75, demonstrating the powerful predic-
tive performance of the WLN method. As the amount 

Fig. 6  A The performance of top-k accuracy in different iterations of message passing (n_layers = 1, 2, 3, 4, 5); B different batch size (10, 16, 20, 32, 
64) and learning rate (0.0001, 0.0003, 0.001, 0.003) were employed to train the SOM prediciton model; C the top-1, top-2 and top-3 accuracy was 
used to assess and compare all of these models

Table 4  The top-1, top-2, top-3 accuracy, AUC and MCC of the 
WLN model compared with others in the test set

Accuracy Top-1 Top-2 Top-3 AUC​ MCC

Our work 0.898 1.000 1.000 0.995 0.844

Cai’s work 0.719 0.797 0.814 0.874 0.558

SOMP 0.814 0.950 0.967 – –

XenoSite 0.864 1.000 1.000 0.996 0.842

FAME3 0.814 0.898 0.932 0.977 0.645
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of data in the training set increased, the top-1, top-2, 
and top-3 accuracy of the model gradually increased. 
When the amount of data exceeded 200, the value of 
the top-1 accuracy could reach above 0.8. The final 
parameters setting of WLN was listed in Additional 
file 1: Table S13.

Modeling results and comparison with existing models
In the present work, we applied the WLN method to pre-
dict the SOMs of UGT enzymes. We used the validation 
dataset to early stop. To compare our model with others, 

we predicted the SOM of our molecules on the test set 
by SOMP, FAME3, XenoSite, and Cai’s work. The results 
of our model with the previous model were shown in 
Table 4.

As we can see in Table 4, the accuracy of top-1, top-2, 
and top-3 of our global model was better than the oth-
ers. The SOMP, XenoSite, and Cai’s work specifically 
predicted the SOM for UGT-catalyzed reactions, while 
FAME3 was not specific for glucuronidation, and this 
model can make more general predictions on phase II 
metabolism. This may be one reason why FAME3 was 
inferior to our model. The most important metric of the 

Fig. 7  Some examples (e.g. compounds A–G) of top-1 prediction results of different models (our model, SOMP, FAME 3, XenoSite, Cai’s work) on the 
test set for the SOM prediction model
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results is top-1 accuracy as most of the substrates have 
only one SOM for UGT-catalyzed reactions, and the 
top-1 accuracy of our model reached 0.898. We can accu-
rately predict all possible sites of metabolism of UGT 
enzymes in the top-2 rank positions, so our top-2 accu-
racy can reach 1.00 on the test set, showing the powerful 
prediction performance of our model.

The statistical information for the three data sets of 
four types of UGT-catalyzed reactions (AlOH, ArOH, 
COOH, Nitrogen) was listed in Table S14. We calculated 
the metrics in different types of UGT-catalyzed reactions. 
We found that the model performance of AlOH (Top-1 
Acc = 1.000), ArOH (Top-1 Acc = 0.900), COOH (Top-1 
Acc = 0.882), and Nitrogen (Top-1 Acc = 0.750) was dif-
ferent. As the results shown, it performed better on the 
types of hydroxyls group than others.

Figure 7 presented some examples of the top-1 possible 
SOM of UGT enzymes predicted by our model, SOMP, 
and FAME3. For example, Fig. 7D showed the predicted 
SOM by three models of Irbesartan [33], which is an 
angiotensin II receptor antagonist and is used to treat 
hypertension. Glucuronidation of Irbesartan is one of the 
major routes of elimination. Compared with the other 
two models, our model can more accurately predict the 
site where the glucuronidation reaction may occur, which 
is more useful to provide valuable information for struc-
tural optimization and improve the pharmacokinetic 
properties of drugs.

Discussion
Combination model for substrate/nonsubstrate prediction 
model
In this study, substrate prediction models for UGT 
enzymes were built by traditional ML methods and 
GNN methods. The traditional ML methods were based 
on molecular fingerprints and physicochemical descrip-
tors, where we should calculate molecular fingerprints 
and physicochemical descriptors before model building. 
However, the GNN methods would extract the molecu-
lar features by the convolution layers, so we don’t need to 
calculate any descriptors by other programs. All the data 
were collected from literature, and we developed fast, 
simple and effective models to predict the reactivity of 
molecules and UGT enzymes.

We built single models including traditional models 
and GNN models, and we selected the top-10 models 
based on the performance of tenfold cross-validation. 
As shown in the results (Fig.  5 and Additional file  1: 
Table  S10) of tenfold cross-validation can find that the 
GNN model and traditional ML models performed quite 
well. Although the data size was not big, the GNN model 
still had a good performance.

In order to improve the stability of the model, we 
selected the top-10 models based on MCC metrics of 
tenfold cross-validation to construct consensus models 
which can predict if a molecule is the substrate of UGT 
enzymes. We built 1023 consensus models which com-
bined n models from the top 10 models. According to the 
result of MCC and AUC metrics in the test set shown in 
Table 2 and Table 3, the consensus model had improved 
than the single model. The traditional ML models were 
based on fingerprint and physicochemical descriptors, 
while the GNN models were based on molecular graphs. 
As shown in Table  3, we found that the molecular rep-
resentation of the top-3 consensus models consisted of 
physicochemical descriptors, fingerprints, and molecu-
lar graphs. In order to further explore the justifiability of 
the consensus model, we tried to build consensus model 
only with traditional ML model or GNNs. Interestingly, 
consensus model which combined traditional ML models 
and GNNs can improve the performance than the best 
consensus model built only with traditional ML models 
or GNNs. It indicated that the combination of different 
molecular representation types contributed to the model 
performance because consensus models learned more 
information from the different single models. Thus, it can 
not only improve the performance of the model but also 
improve the robustness to build a consensus model. we 
chose the top-1 consensus model as the final substrate 
prediction model.

The discussion of the SOM prediction model firstly built 
with GNN methods
After predicting if a molecule is the substrate of UGT 
enzymes, the model for the site of metabolism prediction 
was established by the WLN model to predict where the 
site of metabolism of the substrate is located. The WLN 
model has some advantages. Firstly, it uses graphs to 
represent molecular features without calculating com-
plex descriptors by other programs. Secondly, this model 
only needs the information on the reaction metabolized 
by UGT enzymes. Thirdly, the WLN model is interpret-
able as it is consistent with the analysis of metabolites by 
chemists. Coley et  al. designed a state-of-the-art neural 
model to be aligned with how domain experts (chemists) 
might analyze a problem, and the WLN model applied 
global attention mechanism to offer interpretability 
[16]. Last but not least, compared with the global meta-
bolic model, the local model has higher accuracy and 
can provide more accurate help for medicinal chemists. 
Our model can still achieve better results with a small 
amount of data. As shown in Fig. 6C, with the growth of 
the amount of data, the top-1, top-2, and top-3 accuracy 
of the model gradually increased, so the performance of 
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our model will also improve with the increase in data 
on UGTs metabolism in the future. As shown in Addi-
tional file 1: Fig. S4, we found that the molecules which 
were wrongly predicted at first-ranked site were large and 
complex. Most of the molecules had multiple potential 
sites which can be metabolized by UGTs (–O or –N), and 
the atom environment of SOMs which were wrongly pre-
dicted was more similar to the atom environment of true 
SOMs in the training set, so it’s difficult to predict the 
SOM for complex molecules which had multiple poten-
tial SOMs. Even so, these molecules could be correctly 
predicted at the second-ranked site.

We compared our model with SOMP, FAME3, 
XenoSite, and Cai’s work on the same test set, and we 
found our model had better performance than the oth-
ers. Since the data of the XenoSite was extracted from the 
Accelrys Metabolite Database which is commercial, and 
our data was collected from literature manually, the data 
size of XenoSite is larger than ours. Nevertheless, both 
XenoSite and our model performed almost equally well 
on AUC and MCC metrics, and our top-1 accuracy still 
performed better than XenoSite. It can be explained that 
the WLN model has robust performance on a small data 
set.

Compared with our previous work presented by Cai 
et  al. [9], this work has some improvements. Firstly, we 
built a prediction model for substrate/nonsubstrate 
before the prediction for SOM. Secondly, we collected 
more reaction data metabolized by UGT enzymes and 
our top-k accuracy results were better than before. Last 
but not least, we don’t need to calculate descriptors 
before building the model as the WLN model automati-
cally extracts features through convolutional layers.

In some sense, we can only use the SOM model to 
predict. We found that most metabolic prediction mod-
els were constructed only on substrates, such as SOMP, 
XenoSite and our model. However, the sample distribu-
tion was calculated, and some nonsubstrates fell outside 
the application domain of SOM model. Thus, we built a 
model which can predict if a molecule is the substrate 
of the UGT enzyme and then predict the SOM of the 
substrate.

Conclusions
In this study, we applied traditional ML and GNN meth-
ods to predict the UGT-mediated metabolism of drug-
like molecules. For the substrate prediction, we selected 
the optimal models from both categories of methods 
according to evaluation indicators and then combined 
them to build consensus models to improve the predic-
tive performance and stability. We applied the WLN 
method to predict the SOMs of UGT enzymes. It was the 
first time to use the GNN method in the prediction of 

SOMs, which didn’t need to calculate complex descrip-
tors by other programs. Compared with other published 
models, our model can achieve a more accurate predic-
tion performance on the same test dataset. As the num-
ber of data increases, the performance of deep learning 
models will improve. In a word, Meta-UGT would pro-
vide reasonable guidance for UGT enzyme-mediated 
metabolism, which is conducive to the optimization 
of pharmacokinetic properties of compounds in drug 
discovery.
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