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Abstract 

Virtual screening (VS) aids in prioritizing unknown bio-interactions between compounds and protein targets for 
empirical drug discovery. In standard VS exercise, roughly 10% of top-ranked molecules exhibit activity when exam-
ined in biochemical assays, which accounts for many false positive hits, making it an arduous task. Attempts for 
conquering false-hit rates were developed through either ligand-based or structure-based VS separately; however, 
nonetheless performed remarkably well. Here, we present an advanced VS framework—automated hit identification 
and optimization tool (A-HIOT)—comprises chemical space-driven stacked ensemble for identification and pro-
tein space-driven deep learning architectures for optimization of an array of specific hits for fixed protein receptors. 
A-HIOT implements numerous open-source algorithms intending to integrate chemical and protein space leading to 
a high-quality prediction. The optimized hits are the selective molecules which we retrieve after extreme refinement 
implying chemical space and protein space modules of A-HIOT. Using CXC chemokine receptor 4, we demonstrated 
the superior performance of A-HIOT for hit molecule identification and optimization with tenfold cross-validation 
accuracies of 94.8% and 81.9%, respectively. In comparison with other machine learning algorithms, A-HIOT achieved 
higher accuracies of 96.2% for hit identification and 89.9% for hit optimization on independent benchmark datasets 
for CXCR4 and 86.8% for hit identification and 90.2% for hit optimization on independent test dataset for androgen 
receptor (AR), thus, shows its generalizability and robustness. In conclusion, advantageous features impeded in 
A-HIOT is making a reliable approach for bridging the long-standing gap between ligand-based and structure-based 
VS in finding the optimized hits for the desired receptor. The complete resource (framework) code is available at 
https://​gitlab.​com/​neeraj-​24/A-​HIOT.
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Introduction
Drug discovery refers to the invention or synthesis 
of new potential medications with pharmacological 
effects against pathological conditions. The entire pro-
cess is expensive and challenging. Despite advances 
with impressive growth in technology, designing high-
throughput screening experiments for all known com-
pounds for a particular target(s) is not feasible[1, 2]. 
The identification of interactions between drugs and 
protein binding sites is crucial for developing new 
drugs[3]. It is to be noted that only a small fragment 
of 1060 molecules in the chemical space can thera-
peutically retain drug-like attributes, and it concludes 
the complexity of the drug discovery mechanism. 
Additionally, it is a lengthy mechanism, and the most 
elaborate task is lead molecule identification, which 
initiates the entire process[4, 5]. In earlier times, hit 
identification was predominated by high throughput 
screening (HTS), which was experimentally lengthy, 
time-intensive, and expensive. With the exponentially 
increasing and availability of protein structures and 
ligand resources, and computational architecture[6, 
7], the HTS was conquered by virtual screening (VS)
[8], which is a computational data-driven approach for 
the hit or lead identification. The VS is a computational 

algorithm-driven approach that curates drug-like com-
pounds or molecules from ultra-large virtual libraries 
that can actively interact with the desired target, pre-
dominantly receptors or enzymes[9]. The VS is of two 
types: (a) ligand-based VS (LBVS), where the method 
relies on the similarity between molecules of inter-
est and active molecule, and (b) structure-based VS 
(SBVS), where the selection of molecules depends on 
the interaction between molecules of interest and bind-
ing-site of desired protein structure. VS uses a com-
bination of features based on the chemical, biological, 
and topological properties of selected molecules or 
targets as an input to model the interactions between 
the molecule and targets[10]. However, the drugs 
screened using VS techniques report falsely predicted 
molecules underperformed in the clinical trials, lead-
ing to resultant failure due to multiple reasons includ-
ing varied pharmacokinetics and pharmacodynamics 
profiles may have a chance of failure in clinical trials [1, 
11–13]. Therefore, the occurrence of ample false-pos-
itive (FP) and off-target hits is a significant limitation 
of previously discussed approaches[14]. Machine learn-
ing (ML)-infused artificial intelligence (AI) has been 
implemented in drug discovery. The integration of ML 
in VS has advanced the drug discovery discipline for 
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more than two decades and assisted in diverse aspects, 
such as chemical and biological aspects, physical repre-
sentation, drug repurposing, drug-target interactions, 
bioactivity, and binding affinity predictions[15–18]. 
ML handles structural or non-structural data result-
ing in precise interpretations. Deep neural networks 
(DNNs) have enhanced the AI domain that resulted 
in extensive applications in the field of drug discov-
ery with commendable results while solving complex 
datasets (images or numeric), processing information, 
and providing inference abstraction[19]. The DL/DNN 
frameworks have been successfully applied in LBVS 
using classic statistical techniques and have reported 
superior performance[20]. However, DL algorithms 
also inherit adversities when implemented without 
manual parameter adjustments, which results in out-
come redundancy; moreover, prognostic uncertainty 
remains a standing task that needs to overcome in the 
respective field. Hence, there is the demand for modern 
technological surge in the machine-intelligence (MI) 
frameworks for drug discovery with robust computa-
tional architecture, evolving statistical calculations, 
modern protein-structure calculation techniques[15], 
interpretability in predictive models, and ligand struc-
ture handling methods.

One such kind of advanced ML algorithm, the instance-
based learning (IBL) that relies on the similarity and clas-
sification functions[21] where top-performing training 
instances are saved and used to predict a novel set of 
instances until the generalization set of time. Therefore, 
IBL may allow a set of rules for achieving higher accu-
racy among memory-based ML algorithms. However, 
IBL learns only from a group of stored instances and clas-
sifies, and as a result, it suffers from limitations regard-
ing the application in drug discovery, with only one set of 
instances used at a time. Herein, we can try to strengthen 
the IBL in our study by incorporating advanced high-
end computing and machine intelligence (MI) frame-
works[22]. This kind of instance-based approach[23] has 
yet to be applied for drug discovery for enhancing trans-
parency in the drug-target model that will reveals the 
presence/absence of crucial molecular features respon-
sible for prediction results. Furthermore, a combination 
of primary ML and DNN frameworks, wherein indi-
vidual frameworks are concatenated[24] and automated 
for synergized task execution that can enhance the real 
predictive power of the final model and be the future of 
AI. The combination of multiple prediction by any ML 
algorithm of frameworks called as ensemble, and, in 
general, the ensemble stands for togetherness. The per-
formance of ensemble depends upon: (a) individual per-
formance of base-learners, (b) diversity or independence 

of base-learner’s results of each other. The ensemble 
learning techniques includes; bagging, boosting and 
stacked generalization[25]. The ensemble learning has 
been diversely applied to drug discovery discipline and 
reported elsewhere[15, 26–30]. The ensemble algorithms 
used widely for QSAR model development, drug-tar-
get interaction predictions and protein–ligand binding 
pose[15, 31].

Several methodologies have been developed to handle 
and strengthen massive data for individual approaches 
that employ chemical and protein space to reduce false 
hits[10, 32–36]. The chemical space (CS) stands for an 
array of structurally significant molecules possessing 
relevant properties for a specific or set of biologically 
defined targets. The CS justifies multi-criteria objec-
tives for ideal model development that can pave the way 
for hit identification from large VS libraries[16–18]. The 
ligand-based or CS-inspired hit identifications have been 
reported in DeepChem[37], AMPL[38], and, PyRMD[39]. 
The protein space (PS) is a collection of various features 
relative to ligand-binding modes, the binding pocket, and 
the type of protein–ligand interactions. The PS combined 
with ML, and /DNNs is also called modern SBVS[40, 41]. 
The PS acts as a filter for hit molecules optimization and 
is reported in various methods, including DeepVS[42], 
DeepDocking[43], and Deep Affinity[44].

So far, previously discussed CS and PS methodologies 
have been developed separately or in hybrid manner on 
different platforms resulting in few satisfactory outcomes 
for identifying hit molecules and has been reported else-
where[45]. However, we believe that integration of CS 
and PS leveraging IBL on a single platform for feature 
learning would identify and optimize hits simultaneously 
with higher accuracy and can be convenient for users 
easy to apply. On this trending hypothesis, we concep-
tualized a future-oriented VS framework—automated 
hit identification and optimization tool (A-HIOT) com-
prise of the stacked ensemble[46], deep learning archi-
tectures[19] and combines conventional approaches 
based on the chemical space (AI-driven predictive model 
derived from standard ligand information for respective 
targets) and protein space (target structure and interac-
tion information collection constituting PS and AI-driven 
predictive model extracted from the interaction pattern 
of target protein–ligand complexes) (Fig. 1).

Following the proposed A-HIOT concept, the pri-
mary input requirement for A-HIOT are target selection 
and systematically profiled ligand collection. We chose 
CXC chemokine receptor 4 (CXCR4) as our drug target 
because its expression has been observed in multiple 
types of cancers, including breast, lung, and prostate can-
cers[47–51]; moreover, there are extensive discussions in 
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the literature regarding active/inactive molecules against 
the CXCR4[52–54]. These prior observations led to sig-
nificant interest in the development of CXCR4 inhibitors 
for developing this A-HIOT framework. We compiled 
the reported molecules active against CXCR4, along 
with the half-maximal inhibitory concentration (IC50). 
For generalization purpose, we have evaluated A-HIOT 
on diverse family of GPCR receptors. To overcome the 
lack of methods comparison in selecting optimized hits, 
we have also tried to assess the strength of A-HIOT with 
other ML/DL algorithms on protein receptors under 
study. Thus, the developed A-HIOT framework can be 
largely represented for classification and retrieve opti-
mized hits/leads for any user choice of fixed target pro-
tein. The feature-based interpretability and classification 
process of the A-HIOT assists to overcome the black-box 
issue and followed the principles of explainable AI (XAI)
[23]. In addition, our developed A-HIOT framework can 

be applicable for drug repositioning according to the cur-
rent demand[55].

Material and method
Our rationale behind considering an individual chemi-
cal space that the molecules active against a specific 
receptor must inherit a particular structural feature 
pattern responsible for their biological action. The CS-
driven stacked ensemble framework was established 
for enhanced classification performance for identifica-
tion of hits/leads. The protein space comprises a well-
defined protein target structure and identified hit/lead 
molecules active against the respective drug target. 
For a fixed target, active molecule selection requires 
refinement and analysis of various parameters, e.g., 
protein functional pocket, chemical nature of amino 
acids comprising the active site, prioritizing amino 
acid residues participating in drug binding at the target 
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Fig. 1  Graphical representation of the A-HIOT workflow and function. Automated-hit identification and optimization tool (A-HIOT) utilizes both 
ligand and receptor-structure information to bridge the long-standing gap between ligand-based and structure-based virtual screening. The input 
data for A-HIOT comprises marketed, FDA-profiled, and molecules under clinical trial for an individual or set of specific protein targets belonging to 
a similar family. The ligands were transformed into feature vector (xn = 1,…, N) representation. The data preprocessing retains dimensionality and 
yields a machine-readable dataset. The machine and deep learning comprise the stacked ensemble framework in which random forest, extreme 
gradient boost serves as base-learners, and deep neural networks (deep learning) serves as the super learner job. The inhibitors-like representative 
feature-instances, hence represented, as chemical space (CS) module creation, result in the high-performance classification of the predictive model 
(CS-driven stacked ensemble framework). The true positive (TP) molecules are identified leads/hits that serve as input for the protein space (PS) 
module implemented in the A-HIOT framework. The identified leads were further explored for binding patterns implementing docking-simulation 
within the receptor pocket. The binary fingerprints for each protein–ligand complex are reckoned to assess the binding pattern. These fingerprints 
serve as deep neural networks input and outcomes a robust predictive model (PS-driven DNNs framework). The true positives obtained were 
further concatenated with protein–ligand interaction profiles and re-ranked as per the binding interaction (interaction number between protein–
ligand complex) threshold. The collected molecules are optimized leads serves the purpose of final output in the A-HIOT framework
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site, and the nature of interactions. Therefore, to inte-
grate and sharpen the chemical-space performance, we 
used automated molecular docking, fingerprint-based 
feature vector extraction for amino-acid residues par-
ticipating in ligand-target binding, followed by DNNs 
dependent optimized hit/lead molecule selection 
(Fig. 2).

Training and evaluation dataset collection
As per proposed concept, the primary requirement 
is molecules already in the market, well profiled, and 
may be used for patient treatments. Therefore, we col-
lected approved and well-known agonists of the pro-
posed receptor CXCR4 along with the IC50 values from 
the literature. Molecules were collected and compiled, 
and three-dimensional (3D) structures were generated 
using openbabel (OB)[56], and energy optimization 
(obminimize, an OB module) was used with the steepest 
descent method for 500 steps using the Merck molec-
ular force field, MMFF94s[57]. The molecules were 
stored in.mol2 format, and the overall dataset resulted 
in 175 molecules (Additional file  6: Table  S1), which 
were referred to as the training dataset. The processed 
molecules were labeled as inhibitors (1 or positive) if 
IC50 < 0.05 µM, and the remaining were non-inhibitors 
(0 or negative), resulting in a dataset consisting of 81 

inhibitors and 94 non-inhibitors (Additional file  6: 
Table  S1). We prepared an independent evaluation 
dataset, retrieved from a directory of useful decoys-
enhanced (DUD-E)[58], comprises 56 molecules, spe-
cifically for the CXCR4 receptor, classified as per their 
IC50 value out of which 43 were inhibitors (1/active) 
and 13 non-inhibitors (0/decoy). The evaluation dataset 
was prepared as per the training dataset (Table 1).

Benchmark dataset
We prepared benchmark dataset and retrieved from 
DUD-E, which is a mixture of molecules actives and 
decoys against family of GPCR receptors, i.e., adeno-
sine A2A receptor (AA2AR) and CXCR4. We compiled 
these molecules together to evaluate the generality of 
A-HIOT framework. The dataset is comprising of 3415 
molecules, classified as per their IC50 value consists of 
115 inhibitors (1/active) and 3300 non-inhibitors (0/
decoy). The benchmark dataset was prepared as per the 
training dataset.

Data preprocessing and input generation for ML model
Molecular descriptors (1D, 2D) were calculated using 
PaDEL-Descriptor, an open-source tool[59]. In total, 
1444 1D and 2D descriptors were extracted for each 
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molecule in the dataset. The pre-processing steps were 
implemented for the initial dimensionality reduction to 
ensure data rigidity[60]. Descriptors with more than 85% 
zeros and descriptors with a standard deviation of less 
than 3% were removed. The PCC ( ρ ) was calculated in 
the R platform (https://​www.R-​proje​ct.​org/), using the 
corrplot package, and the descriptors with ρ> 90% were 
considered redundant and removed. Data preprocessing 
produced a final dataset that was ready for ML modeling.

CS‑driven stacked ensemble architecture
The standard notation is used to define the data and 
classifiers:
Ɗ represents the training dataset comprising N (pre-

processed feature vector dataset) known instances of 
input and response variables:

Here, x is the input consisting of D fea-
ture vectors (molecular descriptors and finger-
prints),φis the feature space , y is the coupled response 
variable, and xn represents the n-th feature vector of 
the instance.

The stacked ensemble architecture was established 
using the H2O library in R package (https://​h2o-​relea​
se.​s3.​amazo​naws.​com/​h2o/​rel-​zipf/2/​index.​html). The 
stacking framework collects uncorrelated predictions 
of base classifiers by strengthening diverse predictions 
and reducing overfitting in the final predicted model. 
While handling small datasets in biological and medici-
nal research, the crucial element quantifies stochastic 
and epistemic unpredictability. The ensemble archi-
tecture that we established constructs a consistent yet 
powerful method that can process the issue effortlessly. 
The approach is explained as follows using conventional 
notations:

Base-learner data (tier-0): The training dataset, as 
represented in (Eq.  (1)), is received as input for base-
learning data. Considering cross-validation, the data-
set D is further split into test set ( Dj ) and training set 
( D−j ), where D(j)⊂D j-th fold of the dataset. The J-fold 
cross-validation dataset was drawn stochastically, split-
ting D into J approximately uniform fractions.

Base learners (tier-0 learner, ht): The base classifiers ht 
comprise T base-learning algorithms, where t = 1,…,T, 
which learn from tier-0 data. The RF (£RF) [61] and XGB 
(£XGB)[62] algorithms were selected as the base learn-
ers for tier-0 learning procedure. The training occurred 
by invoking T algorithms on the training set ( D−j ). The 
training output for ht

(−j) on xn observations is znt and is 
concluded as follows:

(1)D =
{(

xn,yn
)

, n = 1, . . .N
}

, xǫφ, y

Super-learner data (tier-1, D cv): The input data for 
the super learner is emanated from D by leveraging the 
cross-validation results of the base learners. The cross-
validation generated a new dataset for level-1 learning as: 

The vector dataset generated (z1,..., zT) for the base 
classifiers ht was used as a meta-learner input.

Super learner (tier-1, H): This is also termed a meta-
learner and is a weighted (wb) combination of base learn-
ers. For the given x vectors and the respective response 
variable y, H can be calculated as

where wb (b = 1,…,B) indicates the weights assigned 
to base learners, h(x) (ht(x)…hT(x)) indicates the base-
learner vectors, and ε is the normal distribution error. 
The DNNs as a super learning algorithm (£DL) was cho-
sen for ensemble study where the input data of H would 
be D cv. The new instance (test set) prediction task was 
performed using ht of the model, combined with H.

The entropy measure (E)[46] was used to assess the 
diversity of the ensemble framework. E varies in the 
range of 0–1 and is calculated as follows:

where θi is the number of classifiers that misclassify the 
instance xi, T is the number of total classifiers, N is the 
number of samples. When E reached the value of 1, the 
abovementioned parameters were added to assess the 
classification performance of the ensemble in terms of 
the BCR, which is a modified version of the correct clas-
sification rate[33]; the BCR is considered as it dictates the 
highest diversity.

The sensitivity (Se) and specificity (Sp) were considered 
while calculating the BCR. Higher BCR scores indicated 
the best-balanced classification model.

Active site definition and binding mode sampling
To design a VS pipeline, the 3D protein crystal structure 
of CXCR4 retrieved from PDB[63] as PDB ID: 3ODU was 
used. Here, the critical issue was to explore and validate 
the active pockets and constituent amino acid residues of 
the protein. Therefore, we established a structure-based 

(2)znt = h
(−j)
t (xn)

(3)Dcv =
{(

zn1, . . . , znT , yn
)

, n = 1, . . . ,N
}

(4)H : y = wbh(x)+ ε

(5)E =
1

N

∑N

i=1

1

T − [T/2]
min{θi(T − θi)}

(6)BCR =
Se + Sp

2
∗ (1− |Se − Sp|)

https://www.R-project.org/
https://h2o-release.s3.amazonaws.com/h2o/rel-zipf/2/index.html
https://h2o-release.s3.amazonaws.com/h2o/rel-zipf/2/index.html
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pharmacophore using Cavity V1.1 [64] and Pocket v3 
[65], which are stand-alone tools. Further, an automated 
docking simulation was carried out to sample bind-
ing modes using AutoDock Vina [66]. Protein structure 
and pre-docking preparations were performed using the 
AutoDockTools [67] wizard. We selected first protein–
ligand interaction complex from top 10 poses.

Fingerprint calculation and DNNs architecture 
for optimized hits selection
The protein–ligand complexes were collected and compiled 
as complex datasets and binary fingerprints, the Klekota–
Roth fingerprint count[68], the substructure count for 
each complex was calculated using the PaDEL-Descriptor 
software. The complex dataset was further used to predict 
interactions (di) between target proteins and molecules 
using the stand-alone tool, protein–ligand interaction pro-
filer (PLIP)[69]. The instance-based DNNs algorithm was 
implemented in R environment and employed using the 
H2O library. The training dataset is as follows:

The algorithm was first trained for 50 epochs with three 
hidden layers having consecutive (400, 200, 400, and 2) 
neurons, each using the “Tanh” activation function for 
the first three layers, followed by fivefold cross-validation. 
The grid search-based hyperparameters optimization for 
high predictive accuracy, classification performance, and 
best model selection with refined parameters was further 
applied. The advanced parameters, such as momentum 
training, rate annealing, and regularization (input drop-
out ratio), were separately defined using the hyperparam-
eters. The training dataset (D) was input into the input 
layer α, and weights (wi) and bias (b) were assigned to 
each information and bias:

To obtain the classification output, f(α ) and PLIP inter-
action numbers di, where d = d1,…di, were concatenated 
as follows:

As per the structure-based pharmacophore and crucial 
amino-acid residue participating in (CXCR4 and IT1t 
complex, standard ligand bound in PDB file) interaction, 
a threshold value for (di) was decided; each complex was 
assigned a di value. The final curation for best-perform-
ing molecules were concluded, where β is the summed 
selection score.

(7)D =
{(

xn,yn
)

, n = 1, ...N
}

, xǫφ, y

(8)α =
∑n

n=1
wixi + b

(9)β = f (α)+ (di)

Training, model validation and benchmark study
The CS-driven stacked ensemble architecture was 
trained with feature vector dataset represented in Eq. 1. 
Firstly, the dataset used by base learners to produce 
cross-validated output as described in chemical space 
module section. Secondly, the cross-validated dataset 
used as input by stacked ensemble, where a three-layered 
DNN (200, 400, 2) was used as the super learner, and the 
"Tanh” activation function was employed for the first two 
layers for 50 epochs. The number of accurately classified 
or true positives (TPs) molecules were identified hits. 
The molecules in the TPs and TNs classes of the classi-
fication process were extracted and used as input for the 
next step, which was PS-driven DNNs framework for 
hit/lead optimization employing protein–ligand interac-
tion scores (β). The molecule dataset used for docking 
simulation with the CXCR4 protein structure to explore 
protein–ligand binding patterns and collect their com-
plex structures. The number of interactions (di) protein–
ligand binding complexes were collected using PLIP. The 
Klekota–Roth fingerprint count was also calculated, and 
the fingerprint dataset was used to train advanced four-
layered DNNs. The molecules classified as TPs were fur-
ther merged with di, and active molecules were finally 
selected according to the value of β. The protein–ligand 
interactions and molecules were visualized using PyMoL. 
The framework evaluation and benchmark experiment 
method details are given in Additional file 1.

Evaluation metrics
The classification of the developed framework was 
assessed using the different performance measures viz., 
accuracy, specificity, sensitivity and area under the curve 
(AUC) of receiver operating curve (ROC) for the CS as 
well as PS modules. The number of accurately classified 
or true positives (TPs) molecules in chemical space mod-
ule were identified hits. The TPs of proteins space mod-
ule bound with di, were selected as optimized hit/lead 
molecules.

Comparison with other ML algorithms
The performance of CS-driven stacked ensemble frame-
work for hits/leads identification was compared with 
other ML classification algorithms comprising RF, XGB 
and DNNs. The comparison task was implanted in R plat-
form. The technical details are given in Additional file 1. 
The performance of PS-driven DNNs framework for hits/
leads optimization was compared with other ML classifi-
cation algorithms comprising RF and XGB.
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Independent case study
To test and demonstrate optimized hits selection power 
of A-HIOT we considered androgen receptors (AR). We 
compiled well-profiled molecules active against AR along 
with IC50 from accessing AR binding dataset (https://​
www.​fda.​gov/​scien​ce-​resea​rch/​endoc​rine-​disru​ptor-​
knowl​edge-​base/​acces​sing-​ar-​bindi​ng-​datas​et-​andro​
gen-​recep​tor) and NRLiSt [70] database for training 
purpose. The training dataset comprise of 146 active (1) 
and 157 inactive (0) and in sun 303 molecules. To evalu-
ate the capability of A-HIOT for eliminating decoys and 
false hits as well as selection of strong optimized hit, an 
independent dataset was compiled and retrieved from 
DUD-E database. The test dataset comprises of 249 active 
and 872 inactive and in sum 1122 molecules. The training 
and testing dataset were pre-processed as per previously 
disclosed concept. The pre-processed molecules gener-
ated ML-ready dataset for CS-module of A-HIOT. We 
retrieved 3D protein crystal structure of AR as PDB ID: 
2AM9 from PDB database for PS-module A-HIOT.

Results and discussion
Integrating chemical- and protein-space-driven archi-
tectures can simultaneously lead to the identification (by 
CS module) and optimization (by PS module) of hit mol-
ecules, achieving the A-HIOT framework, which stands 
for automated-hit identification and optimization tool. 
The A-HIOT uses multiple R libraries to develop stacked-
ensemble and DNNs algorithms.

The A-HIOT implements CS-driven stacked ensem-
ble framework (CS module) comprising RF and XGB 

as base-learners and DNNs as super-learner, where the 
weight of every base model has deemed a random vari-
able for chemical space. The ensemble algorithm within 
the A-HIOT does not inherit probabilistic nature, which 
allows us to effectively explore the integration of R librar-
ies to obtain the best accuracy and specificity of the pre-
dictive model. It is to be noted that features should be 
diverse so that their (features) information would not 
hinder the capability of the predictive model. Feature 
engineering is a prime requirement of CS module for 
achieving satisfactory performance, interpretability of the 
predictive model, and overcoming dimensionality[60]. 
The molecular features inherits calculated quantitative 
values of molecular structures that perhaps correlate to 
the biological activity of the respective structure; one-
dimensional (1D) and two-dimensional (2D) features 
can be easily calculated and are interpretable and under-
standable[71, 72]. The initial feature space consists of 63 
classes (Additional file 7: Table S2) that was further pre-
processed as per methods section to generate ML-ready 
dataset is engineered, along with rigid dimensionality. 
The final input dataset comprises of 674 features related 
to 38 classes.

The docking simulation establishes interaction patterns 
among target protein and identified hit/lead molecules; 
interaction-dependent fingerprints allow us to assemble 
the PS-driven DNNs framework. The DNNs produces 
a predictive model that can effectively classifies mol-
ecules by adjoining with interaction numbers, re-ranked 
and the best-performing molecules were picked-up as 
optimized hit/lead molecules. The weighted ensemble 

Fig. 3  a Chemical space module architecture for hit/lead identification. The first module of A-HIOT identifies hit/lead molecules emphasizing 
chemical space (CS). Here, as per concept, the chemical structures of known inhibitors for CXCR4 protein were collected, transformed into feature 
vectors, and preprocessed to achieve a machine-readable dataset. The chemical space leverages random forest (RF), extreme gradient boost (XGB), 
and deep neural networks or deep learning (DNN/DL) algorithms to construct a predictive classification model. We combined these distinctive 
models into the stacked ensemble where RF and XGB serve as tier-0 learners, receive input data as feature vectors, train h1… ht predictive 
models and produce z1…zt predictions. The tier-0 predictions serve as input for the tier-1 learner that is DNN (H). The tier-1 algorithm is termed a 
meta-learner. The wb (b = 1,…,B) indicates the weights assigned to base learners, h(x) (ht(x)…hT(x)) indicates the base-learner vectors, and ε is the 
normal distribution error. The true positives produced by the CS-driven stacked ensemble framework were the identified leads/hits because the 
framework learned the inhibitors-like representative feature instances that resulted in a high-performance classification prognostic model. This 
step ensures reducing the huge and complex dataset to a meaningful one that still demands further optimization. Thus, the CS-driven stacked 
ensemble framework in the A-HIOT framework achieves hit identification and is herein represented as the red ring. b Protein space module 
workflow for hits/leads optimization. The second protein space (PS) module of the A-HIOT optimizes hit/lead molecules emphasizing protein–
ligand interaction patterns. Initially, the protein structure is obtained and explored for potential binding sites, binding residues within the binding 
pocket. Furthermore, the balanced dataset collected from chemical space comprising true positives and true negatives. The interaction patterns 
are established among protein and identified molecules employing docking simulation. The binary fingerprints for each protein–ligand complex 
are reckoned to assess binding-pattern. These fingerprints serve as deep neural network input and a robust predictive model (PS-driven DNNs 
framework). The true positives produced by the model were further concatenated along with protein–ligand interaction profile (PLIP) score (di) 
and re-ranked following binding interaction threshold. The collected molecules implemented in the A-HIOT framework named optimized leads are 
represented as the blue ring. We have devised this module using CXCR4 as a protein case under study. The D represents DNN ready dataset where 
the DNNs output f(α ) for the classification model. Further concatenation with (di) yielded β that produced optimized hit molecules

(See figure on next page.)

https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-ar-binding-dataset-androgen-receptor
https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-ar-binding-dataset-androgen-receptor
https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-ar-binding-dataset-androgen-receptor
https://www.fda.gov/science-research/endocrine-disruptor-knowledge-base/accessing-ar-binding-dataset-androgen-receptor
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and interaction fingerprint-dependent DNNs predictive 
framework produce a simple, hitherto strong, in silico 
pipeline to eliminate uncertainty while achieving lead 
identification and better selection during lead optimiza-
tion. We have then assessed CS and PS modules of the 
A-HIOT in the corresponding section and comparison 
was carried out.

Performance of CS module of A‑HIOT and comparison
We established a stacked generalization[73] ensemble 
and constituted the hit identification CS module (Fig. 3a) 
for the A-HIOT framework. The stacked ensemble spec-
ulates the weighted average of each consistent model of 
the ensemble framework, and a super learner tunes the 
weights over the feature space φ while integrating these 
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models. The performance of CS-driven stacked ensemble 
framework was carried out in such a way, firstly, tenfold 
cross-validation was implemented to validate the dataset 
and evaluate the prediction efficiency. A random subset 
of 10% of the training dataset was selected, named the 
internal evaluation dataset; the rest was implemented for 
model training. The CS-driven stacked ensemble model 
was trained and internally evaluated, including accuracy, 
sensitivity, specificity, and AUC-ROC matrices.

The feature vector dataset (Eq. 1) was first used as input 
data. The base-learner frameworks then performed ten-
fold cross-validation (CV) and the CV output data was 
further served as input data for the super learner (tier-1, 
H) framework. The stacked ensemble achieved an accu-
racy of 0.948 for internal evaluation (internal test set), 
along with 0.961 sensitivity, 0.988 specificity, and 98.8% 
AUC.

We compared CS-module of A-HIOT with three 
diverse individual classification algorithms namely RF, 
XGB, and DNNs/DL. Firstly, the RF model obtained 0.826 
accuracy, 0.891 specificity and 89.1% AUC for training 
performance (Additional file 2: Fig. S1, Additional file 8: 
Table S3) for internal evaluation (test set). Secondly, we 
used the XGB, for internal evaluation, the XGB frame-
work classifies with an accuracy of 0.809, and specific-
ity was found to be 0.761, and 81.2% AUC respectively, 
and shown in (Additional file 3: Fig. S2, Additional file 9: 
Table S4) Thirdly, we used DNNs employing grid-based 
hyperparameters tuning to dig deep into the respective 
algorithms for the best classification outcomes. The best 
model established an accuracy of 0.902, a maximum sen-
sitivity of 0.896, specificity of 0.923, and AUC-ROC for 
internal evaluation was 91.4%, AUC respectively, for the 
internal evaluation dataset and shown in (Additional 
file 4: Fig. S3, Additional file 10: Table S5). Overall, it can 
be concluded with tenfold cross validation datasets, CS-
module of A-HIOT performed much better than indi-
vidual ML/DNN in terms of higher accuracy, specificity 
and AUC.

We have also assessed each framework on the small 
independent validation dataset, rigorously to determine 
the classification performance, feature learning, and hits/
leads identification. The RF reported minimal overfit-
ting as it obtained 0.726 accuracy and 0.747 specificity 
rate, XGB performed well by bringing 0.789 accuracy 
and 0.816 specificity, DNN disappointed by receiving 
merely 0.782 specificity rate and nominal over-fitting. 
As compared to individual frameworks, the CS-stacked 
ensemble module framework obtained 0.867 accuracy 
and 0.967 specificity on the small independent valida-
tion dataset and identified 35 hit/lead molecules (Fig. 4), 
showcasing comparative performance in Table  3. The 

stacked ensemble was found to enhance the classification 
performance in comparison to the individual framework.

The reason for superior performance of CS-stacked 
ensemble module of A-HIOT in comparison with other 
individual ML/DNNs algorithms is picking up suitable 
hits for a particular target (35, Fig.  4); which could be 
likely potent inhibitors of CXCR4. The 3D-QSAR studies 
of CXCR4 receptor (PBD ID:3OE6, 3ODU) is well known 
and vastly employed in literature. The bound ligand 
found in PDB structure and structure–activity relation-
ship (SAR) studies shows that the critical structural con-
stituents, the prime requisites to be a desired ligand for 
CXCR4 comprises of: a) imidazole, imidothizoles or ben-
zimidathiazole ring systems which helps in interaction 
with D97, E288, and D193 amino acid residues of CXCR4 
binding site; b) a protonated nitrogen moiety helps in 
interaction with D97 and E288; c) one or more aliphatic 
moiety which would be six-, seven- or eight-membered 
ring system for optimal binding with W90, H113, and 
Y116 binding site residues. Essential or optimal aro-
matic ring system could be considered as: (i) quinazo-
line, (ii) purine, (iii) naphthalene, and (iv) indolyl[74]. 
The observations on small independent validation data-
sets revealed the correctly predicted hits belonging to the 
aromatic ring system in particular imidazole which is the 
prime requirement to be an inhibitor for CXCR4 that jus-
tified overall good performance measures of CS-module 
of A-HIOT as compared to individual ML/DNN algo-
rithms (Fig.  5). The CS-driven stacked ensemble frame-
work attained a significant, balanced classification rate 
(BCR) of 0.8. We collected TP and TN molecules to cre-
ate a balanced dataset for the next step, i.e., the protein 
space module.

Protein cavity and interaction‑pattern analysis for PS
Before assessment of PS module (Fig. 3b) of A-HIOT, we 
want to clarify the usage of a target i.e. CXCR4 in detail. 
We have chosen CXCR4 receptor protein which itself is 
an essential regulator of immune system espionage and 
inflammation homeostasis, and its structure has been 
investigated along with the bound antagonist IT1t and 
cyclic peptide CVX15[75–77]. We retrieved the pro-
tein’s crystal structure in the bound state with antago-
nist IT1t and carried out pharmacophore mapping, also 
called geometrical measurements of the active pocket. 
The pharmacophore features, including hydrogen bond 
donors, hydrogen bond acceptors, and hydrophobic 
sites, were collected and integrated with an active pocket 
definition (Fig.  6a–d). The active pocket comprises the 
following: (a) the critical amino acid residues encom-
passing the active pocket were W94, D97, W102, V112, 
Y116, R183, I185, C186, D187, and E288 belonging to the 
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Fig. 4  Identified hits by the CS-driven stacked ensemble framework from small independent validation dataset. The stacked ensemble of 
chemical-space A-HIOT led to the best identification of 35 hit molecules for a particular target (in case, CXCR4 receptor). The trained CS module 
of A-HIOT tested on small independent validation datasets (56 molecules) predicted most of the hits belonging to the aromatic ring system, 
in particular, imidazole ring which is the prime inhibitor of CXCR4 receptor justified its good performance measures as compared to individual 
machine learning algorithms
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7tmA_CXCR4 domain of the CXCR4 family; (b) other 
amino acid residues contributing to ligand binding were 
C28, Y45 (belonging to the CXCR4 N-terminus domain), 
V96, F93, Y121, R188, F248, Y256, I286, and F292 cross-
referred via conserved-domain search (CD-Search)[78]. 
The functional pocket assessment determines the prob-
able number of interactions among proteins and drug/
ligand molecules and justified by interaction pattern 
analysis between CXCR4-IT1t complex, the standard 
ligand found in PDB structure, and a threshold value 
was proposed for the number of interactions; as per our 
hypothesis, the number of interactions per protein–
ligand complex was 9–12 (Fig. 6e).

Additionally, docking simulation experiment gener-
ated diverse interaction patterns along with 10 poses and 
top pose with best interactions were first selected. The 
interaction profiling for the complex dataset was carried 
out by implementing PLIP, which designated the interac-
tion accompanying the type of interaction to each ligand 
and complex. The interaction profile explains that W94, 
D97, W102, R183, R188, F248, Y256, E288, and F292 
are critical amino acid residues that perform essential 
roles for the protein function. W94 have pi-stacking as 
well as hydrophobic interactions; D97 forms hydrogen 
bonds, hydrophobic interactions, and salt bridges; E288 
forms hydrophobic interactions, hydrogen bonds, and 

Fig. 5  The CS-driven stacked ensemble framework classification performance. The stacking framework collects uncorrelated predictions of base 
classifiers, strengthening diverse predictions and reduce overfitting in the final predicted model. The results of internal testing and independent 
validation of the prognostic model were assessed by area under the curve- receiver operating characteristics (AUC-ROC). Herein, the AUC-ROC plots 
illustrate the augmented classification performance achieved by stacking framework instead of implementing a specific classification algorithm. 
For internal evaluation, the designated super-learner (DNNs) has obtained 98.8% AUC-ROC (a) while base-learners RF and XGB achieved 88.6% (b) 
and 79.6% (c) AUC-ROC, respectively. The trained and tested prognostic model administered to identify hits from a small independent validation 
dataset has achieved a remarkable 83.90% AUC-ROC for the stacked framework (d). In contrast, base-learners, RF, and XGB obtained 81.80% (e) and 
80.82% (f) AUC-ROC. The benchmark performance AUC-ROC plots for the CS-driven stacked ensemble obtained 90.2% (g) and base-learners RF 
and XGB obtained 82.2% (h) and 81.3% (i). Our results from implementing different machine and deep learning algorithms suggested that if any 
of the algorithm cannot handle input data well, the super-learner could handle the classification and data tasks. From the independent dataset, CS 
module of A-HIOT identified 35 hit molecules those demand further optimization as per receptor structure and will be considered as input for PS 
module of A-HIOT
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salt bridges; R188 forms hydrogen bonds and pi-cation 
interactions; moreover, W102 forms hydrophobic inter-
actions. The information generated will serve as evalu-
ation for assessment of PS-driven DNNs framework of 
A-HIOT with other machine learning algorithms.

Performance of PS module of A‑HIOT and comparison
The calculated Klekota–Roth fingerprint count (4860) 
for the protein–ligand complexes dataset that computes 
imperative fragments or substructures for given dataset 
with refined biological vitalities and prepares as input for 

Fig. 6  Binding pocket investigation and quantification for the target protein. Binding pocket assessment and crucial amino acid residues 
designation is vital for pharmacological activity by liable molecules. Herein, we displayed the binding pocket investigation and quantification 
layout. We first retrieved the 3D structure of CXCR4 (a) protein from the PDB database and bound ligand (PDB ID: 3ODU). The CXCR4 structure was 
subjected to the Cavity program to assess vacant ligand-binding pocket (red) and grid points (violet) as represented in b and c. For binding residue 
quantification, the results of the Cavity program were used as input by Pocket v3 that result in the amino acid residues location (d) along with 
probable types of interaction. The blue colored spheres symbolize hydrogen bond donor, red are hydrogen bond acceptor, and pink represents 
hydrophobic interaction residues. In summary, the active residues comprise the active binding pocket for CXCR4 protein (e) along with residue 
location. The information generated will serve as evaluation for assessment of PS-driven DNNs framework of A-HIOT with other machine learning 
algorithms

Table 1  Summary of the molecular datasets used in this study

* The training dataset partitioned into 7:3 classified as Internal test set (x’) for both CS- and PS-modules

Dataset Name No. of molecules No. of active molecules (1) No. of inactive 
molecules (0)

Protein class: CXC-chemokine receptor 4 (CXCR4)

 Training dataset* 175 81 94

 Small independent validation dataset 56 43 13

 Large independent benchmark dataset 3415 115 3300

Protein class: Androgen receptor (AR)

 Training dataset* 303 146 157

 Independent test dataset 1121 249 872
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PS-driven DNN framework. The fingerprint approach 
was implemented for interaction rescoring, boost-
ing the predictive power of the DNNs framework. The 
training using fingerprint data comprises of imperative 

substructure-encoded biological activity information[79]. 
The DNNs framework learns crucial features employing 
IBL and established the trained predictive model, further 
using internal test set, the classification evaluation (x’) 

Table 2  PS-driven DNNs classification performance: the comparison of classification performance of the PS-driven DNNs/DL 
framework for hit/lead optimization employing PS module

a Total of 175 (81 inhibitors and 94 non-inhibitors) partitioned into 7:3 classified as Internal test set (x’)
b 46 (35 inhibitors and 11 non-inhibitors) classified as small independent validation dataset

Algorithm Dataset Accuracy Sensitivity Specificity AUC-ROC

PS-driven Deep Neural Networks (DNNs/DL) Internal evaluation (x’)a 0.818 0.913 0.824 0.812

Small independent valida-
tion datasetb

0.859 0.872 0.822 0.884

Fig. 7  The PS-driven DNNs framework performance comparison. The PS-driven DNNs framework trained with binary fingerprint dataset encodes 
protein–ligand interaction pattern information, and prognostic model classify unlabeled dataset following interaction pattern information. The 
AUC-ROC plots shows the classification performance obtained by PS-driven DNNs framework for binary fingerprint dataset for internal evaluation 
81.2% (a), for the small independent validation dataset 88.4% (b) and for benchmark dataset 89.8% (c)
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was carried out and the predictive model obtained 0.819 
accuracy, 81.2% AUC-ROC, 0.913 sensitivity, and 0.824 
specificity during classification process. The TPs clas-
sified molecule in x’ were adjoined with the PLIP score 
to achieve a sensible array of molecules, and further re-
ranked as per defined pharmacophore descriptor thresh-
old (9–12).

We also carried out the PS-driven DNNs framework 
validation by utilizing the small independent validation 
dataset compared in Table  2. For validation dataset it 
obtained 0.859 accuracy, 88.4% AUC-ROC (Fig.  7a–c), 
and 0.872 sensitivity, and 0.822 specificity, where sensi-
tivity denotes true positives (TPs) rate and TPs were the 
optimized hits along with bound IT1t standard ligand in 
PDB file (Fig. 8a–c). We found four best performing opti-
mized hits from a small independent validation dataset.

For lack of availability of methods, the classification 
performance of PS-driven DNNs framework was com-
pared with individual framework viz., RF and XGB algo-
rithms for optimized hits/leads selection. The binary 

fingerprint feature vectors served the input dataset as 
Eq.  7. Firstly, RF algorithm used for internal evaluation 
(internal test set, x’) wherein, it obtained 0.802 accuracy, 
0.754 sensitivity, 0.821 specificity and 80.1% AUC. Sec-
ondly, XGB used for internal evaluation where it obtained 
0.806 accuracy, 0.786 sensitivity, 0.813 specificity and 
81.2 AUC. The RF showed minimal specificity (0.488) 
and certain overfitting as it obtained large AUC (82.2%) 
along with 0.614 accuracy and 0.724 sensitivity for clas-
sification task. Similarly, XGB obtained small amount of 
specificity (0.534), low accuracy (0.631), insufficient AUC 
(69.9%) along with good sensitivity 0.763. The top ranked 
molecules identified by PS module of A-HIOT were opti-
mized hits/leads according to the proposed pharmaco-
phore mapping which unveils the interaction as well as 
interacting substructure counts. Moreover, the PS mod-
ule is the amalgamation of the established protein cav-
ity and protein–ligand interaction pattern profiles which 
were boosted by the DNNs framework in PS module of 
A-HIOT framework for hits/leads optimization justified 

Fig. 8  The representation of optimized hits by PS module. The true positives (TP) identified from PS-driven module of A-HIOT were decoded into 
molecule IDs, merged with PLIP score (di), and ranked, observing the proposed threshold for the CXCR4 binding interaction profile. The β illustrates 
the final ranking score for each ligand molecule subjected for optimization; a shows the CXCR4 interaction patterns and participating amino acid 
residues with its standard ligand (IT1t); b accumulates all four molecules (CHEMBL129, CHEMBL452868, CHEMBL461358, and CHEMBL518501) from 
independent set administered for optimization coupling interaction patterns and c details the types of interaction and bond formation pattern
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its superior performance as compared to individual MLs 
(RF/XGB) (Fig. 7d–i; Table 4).

Performance of A‑HIOT for hit/lead identification 
and optimization on benchmark dataset
To ensure the generalization capability of the A-HIOT, 
we carried out performance analysis for CS and PS 
module framework for hits/leads identification and 
optimization from benchmark dataset that comprises 
of mixture of active molecules and decoys against fam-
ily of GPCR receptors as mentioned in the materials 
and methods section.

The CS module achieved an AUC of 90.2% (Fig.  5) 
and accomplished the classification task remarkably, 
maintaining the balance between sensitivity (0.921) and 
specificity (0.987); additionally, the accuracy (0.962) 
of the entire model, shown in Table 3. The satisfactory 
sensitivity (measure of identifying hits/leads (TPs)) 
and specificity (measure of eliminating false hits/leads 
(TNs)) translates the predictive power of CS-driven 
stacked ensemble framework. We compared the bench-
mark performance among individual ML classification 
algorithms, shown in Table  3 and observed the higher 
accuracy of CS-driven stacked ensemble framework 

Table 3  CS-driven Stacked Ensemble framework and Benchmark performance comparison for CS module: the performance 
comparison of CS-driven Stacked Ensemble framework and Benchmark with individual ML algorithm

a Total of 175 (81 inhibitors and 94 non-inhibitors) partitioned into 7:3 classified as Internal test set (x’)
b 56 (43 inhibitors and 13 non-inhibitors) classified as small independent validation dataset
c 3415 (115 inhibitors and 3300 decoys (termed as non-inhibitors)) classified as large independent benchmark dataset

Algorithm Dataset Accuracy Sensitivity Specificity AUC-ROC

Random Forest (RF) Internal test set (x’)a 0.826 0.793 0.891 0.891

Small independent validation datasetb 0.726 0.642 0.747 0.807

Large independent benchmark datasetc 0.914 0.705 0.823 0.823

Extreme Gradient Boost (XGB) Internal test set (x’)a 0.809 0.819 0.761 0.812

Small independent validation datasetb 0.789 0.571 0.816 0.782

Large independent benchmark datasetc 0.908 0.827 0.709 0.787

Deep Neural Networks (DNNs/DL) Internal test set (x’)a 0.902 0.896 0.923 0.914

Small independent validation datasetb 0.894 0.877 0.782 0.866

Large independent benchmark datasetc 0.924 0.767 0.923 0.951

Stacked Ensemble Internal test set (x’)a 0.948 0.961 0.988 0.991

Small independent validation datasetb 0.867 0.911 0.967 0.839

Large independent benchmark datasetc 0.962 0.921 0.987 0.902

Table 4  Performance comparison of PS-driven DNNs framework with other ML algorithms: the comparison of benchmark 
performance of the PS-driven DNNs/DL framework for hit/lead optimization employing PS module

a Total of 175 (81 inhibitors and 94 non-inhibitors) partitioned into 7:3 classified as Internal test set (x’)
b 46 (35 inhibitors and 11 non-inhibitors) classified as small independent validation dataset
c 1886 (86 inhibitors and 1800 decoys (termed as non-inhibitors)) classified as large independent benchmark dataset

Algorithm Dataset Accuracy Sensitivity Specificity AUC-ROC

Random Forest (RF) Internal test set (x’)a 0.802 0.754 0.821 0.801

Small independent validation datasetb 0.614 0.724 0.488 0.822

Large independent benchmark datasetc 0.726 0.817 0.827 0.834

Extreme Gradient Boost (XGB) Internal test set (x’)a 0.806 0.786 0.813 0.812

Small independent validation datasetb 0.631 0.763 0.534 0.699

Large independent benchmark datasetc 0.782 0.838 0.621 0.848

Deep Neural Networks (DNNs/DL) Internal test set (x’)a 0.818 0.913 0.824 0.812

Small independent validation datasetb 0.859 0.872 0.822 0.884

Large independent benchmark datasetc 0.899 0.902 0.924 0.898
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over the three individual frameworks as similar perfor-
mance case of the independent small dataset.

The PS module obtained an AUC of 89.8% (Fig. 7) and 
accuracy of 0.899 along with sensitivity and specificity 

of 0.902 and 0.924 (Table 4), respectively, demonstrat-
ing the effectiveness of using the interaction finger-
print as well as the accuracy of the predictive model in 
optimizing identified hits/leads. The interaction profile 

Fig. 9  The performance comparison of A-HIOT on AR: case study. The internal evaluation was performed employing random split of training 
dataset into 7:3 ratios and AUC-ROC plot (a) demonstrates 86.4% training performance for CS-module and the independent test dataset obtained 
86.8% AUC-ROC (b), that translates the satisfactory classification and hits/leads identification capacity. Similar approach was used in PS-module for 
internal evaluation wherein, the approach obtained 87.9% AUC-ROC shown in (c) and for independent test dataset its obtained 90.2% AUC-ROC 
shown in (d). The exceptional performance if PS-module dictates the power of A-HIOT for hits/leads optimization

Table 5  Performance Comparison of CS- and PS- modules of A-HIOT on androgen receptor (AR): the performance comparison of the 
CS- and PS- modules of A-HIOT for internal and independent evaluation for optimized hits/leads using androgen receptor

a Total of 303 (146 inhibitors and 157 non-inhibitors) partitioned into 7:3 classified as Internal test set (x’) for both CS- and PS-modules
b 1121 (249 inhibitors and 872 non-inhibitors) classified as independent test dataset for CS-module
c 878 (126 inhibitors and 752 non-inhibitors) classified as small independent validation dataset

Algorithm Dataset Accuracy Sensitivity Specificity AUC-ROC

CS-module

 CS-driven Stacked Ensemble Internal test set (x’)a 0.867 0.845 0.902 0.864

Independent test datasetb 0.882 0.892 0.886 0.868

PS-module

 PS-driven Deep Neural Networks 
(DNNs/DL)

Internal test set (x’)* 0.852 0.823 0.894 0.879

Independent test datasetc 0.919 0.862 0.924 0.902
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concatenation helped us to screen optimized hit/lead 
molecules. Thus, the advantages of utilizing both CS- 
and PS-driven into the A-HIOT framework provide the 
researchers with a higher accuracy of finding optimized 
leads for a particular receptor with minimum set of 
false positives (FPs).

Performance of A‑HIOT for hit/lead identification 
and optimization on androgen receptor (AR): case study
To ascertain the hit identification and optimization com-
petency of A-HIOT for any receptor, irrelevant to CXCR4, 
we chose AR for a separate case study. The AR is a type 
of nuclear receptor, also known as nuclear receptor sub-
family 3, group C, member 4 (NR3C4) and is activated by 
testosterone. The AR participate significantly in prostate 
cancer thus anti-androgens used to treat the same.

The training of CS-module of A-HIOT demonstrated 
satisfactory classification performance by achieving 
86.4% AUC (Fig. 9a, b) along with balanced 0.845 sensi-
tivity and 0.902 specificity. In addition, the 0.867 accu-
racy of trained model. In comparison with classification 
and hits/leads identification power from test dataset, 
the CS-module of A-HIOT achieved 86.8% AUC, 0.892 
sensitivity and 0.886 specificity and 0.882 accuracy and 
shown in Table 5. The sensitivity (measure of identifying 
hits/leads (TPs)) and specificity (measure of eliminating 
false hits/leads (TNs)) translates the hits/leads identifi-
cation power of CS-module of A-HIOT. The CS- mod-
ule identified 126 active and 752 inactive molecules and 
comprises the dataset input for PS-module of A-HIOT.

The training dataset for PS-module comprise of 303 mol-
ecules and test dataset has 878 molecules. The ML-ready 
dataset prepared as per PS-module protocol by calculat-
ing protein–ligand interaction Klekota-Roth substructure 
fingerprint count (binary fingerprints). The training of 
PS-module achieved 87.9% AUC along with 0.823 sensitiv-
ity and 0.894 specificity. The trained model obtained 0.852 
accuracy that dictates the effectiveness of entire model. In 
comparison when trained model applied to test dataset 
and obtained 90.2% AUC, 0.862 sensitivity, 0.924 specific-
ity, and 0.919 accuracy (Fig. 9c, d). The PS-module reported 
higher AUC and specificity scores that defines the suffi-
ciency of A-HIOT for correct elimination of decoys or false 
hit and retrieval of true optimized hit. The TPs were further 
extracted and concatenated along with protein–ligand inter-
action profile scores and ranked as per interaction threshold 
(6–8). We retrieved eight optimized hit/lead molecules.

Conclusion
VS is a supremely in-demand technique to find potential 
drug-like molecules from ultra-large virtual libraries for 
the desired target. While finding potential molecules, 
there are chances of substantial false hits and lack of 

biological selectivity for the desired target, which is 
expensive and time-consuming. The existing VS algo-
rithms identify hits or lead that further demand optimi-
zation for in vitro examination. Therefore, we attempted 
to develop a novel method that simultaneously identifies 
and optimizes hit/lead molecules by integrating chemi-
cal- and protein-space-driven architectures and stands 
for an automated-hit identification and optimization tool 
(A-HIOT).

Benchmarking and case study for AR experiments 
show that the performance of both CS and PS modules 
of A-HIOT are superior to several other individual ML/
DNN frameworks when assessed on the benchmark 
dataset for family of GPCR receptors (CXCR4 and 
AA2AR) and androgen receptor (AR). The attractive 
advantages of our A-HIOT framework can be reflected 
in the following aspects. First, the CS-driven stacked 
ensemble framework does not inherit probabilistic 
nature allows it to effectively explore the feature space 
to obtain the best accuracy and specificity of the pre-
dictive model that can identify hits (TPs) required for 
receptor target. Second, the PS-driven DNNs frame-
work, which learns from fingerprint information and 
picks up specifically well interacting molecules (TPs) 
as per substructure fingerprint count presence. Third, 
the TPs produced by PS-driven DNN framework were 
combined with PLIP of TPs as per the fixed threshold 
that are in line with the pharmacophore hypothesis and 
selected as optimized hits.

The A-HIOT can be considered as a generalized 
framework that will implement to find novel active 
molecules or the drug-repositioning task. While on 
assessing the family of GPCR receptors, A-HIOT 
generated a list of the optimized hits/leads mixture 
of inhibitor molecules with higher specificity and 
AUC that were found to be active against CXCR4 and 
AA2AR receptors. Thus, A-HIOT serves the purpose of 
finding new drug-like molecules as well re-positioned 
molecules active for other receptors and to demon-
strate this aspect, we carried out an independent case 
study by using AR. Being an independent case study, 
the A-HIOT performed exceptionally well for finding 
optimized leads. The optimized hits/leads can directly 
go to in vitro experiments that reduce the cost and time 
of lead optimization and HTS. The A-HIOT brings 
chemical and protein spaces together, bridging a long-
standing gap between the respective fields. The pipe-
line caters to chemists and biologists and compels them 
to confidently execute a VS or drug-repurposing task, 
even if computational awareness is low. We assume that 
integrating AI, framework streamlining, and human 
intervention reduction can boost in silico drug discov-
ery and repositioning.
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Additional file 2: Fig S1. Random Forest (RF) classification performance. 
The AUC-ROC plots illustrate the augmented classification performance 
achieved by RF algorithm when implemented individually. Initially, the RF 
trained employing standard dataset that obtained 99.42% training (a) and 
89.10% for internal evaluation (b) set. The algorithm obtained 99.07% (c) 
and 80.72% (d) AUC-ROC plots representing training and prediction for 
small independent validation dataset and 99.51% (f ), 82.3% (g) for large 
independent benchmark dataset. The instances used to train and bench-
mark RF algorithm presented in (e and h).

Additional file 3: Fig. S2. Extreme Gradient Boost (XGB) classification 
performance. The AUC-ROC plots illustrate the augmented classification 
performance achieved by XGB algorithm when implemented individu-
ally. Initially, the XGB trained employing standard dataset that obtained 
99.93% training (a) and 81.2% for internal evaluation (b) set. The algorithm 
obtained 99.81% (c) and 78.2% (d) AUC-ROC plots representing training 
and prediction for small independent validation and 99.78% (f ) and 78.7% 
(g) for large independent benchmark dataset. The instances used to train 
and benchmark XGB algorithm presented in (e and h).

Additional file 4: Fig. S3. Deep Neural Network/Deep Learning (DNN/DL) 
classification performance. The AUC-ROC plots illustrate the augmented 
classification performance achieved by DNN/DL algorithm when imple-
mented individually. Initially, the DNN/DL trained employing standard 
dataset that obtained 99.63% training (a) and 91.4% for internal test (b) 
set. The algorithm obtained 99.81% (c) and 86.62% (d) AUC-ROC plots 
representing training and prediction for small independent validation 
and 99.78% (f ) and 95.1 (g) for large independent benchmark dataset. The 
instances used to train DNN/DL algorithm presented in (e and h).

Additional file 5: Fig. S4. Optimized hits retrieved via CS-driven stacked 
ensemble from independent dataset. The stacked ensemble identified 
35 hit molecules. Herein, the DNN-driven predictive model concatenated 
along with PLIP score procedure implemented for hit optimization and we 
found four molecules and showcased in this figure.

Additional file 6: Table S1. Chemical composition of training dataset.

Additional file 7: Table S2. Details of feature descriptors used in present 
study to create feature space(ɸ).

Additional file 8: Table S3. Details of class of feature instances used in RF 
prognostic model construction.

Additional file 9: Table S4. Details of class of feature instances used in 
XGB prognostic model construction.

Additional file 10: Table S5. Details of class of feature instances used in 
DNNs/DL predictive model construction.

Additional file 11: Table S6. Details of feature descriptors used for model 
development and validation.

Acknowledgements
We would like to thank Abhishek Khatri for his support and advice in the 
GitLab repository.

Author contributions
NK and VA: Research design, experimental work, data analysis, manuscript 
preparation and final revision.

Funding
This research was supported by Council of Scientific and Industrial research 
(CSIR), India and Department of Biotechnology, India for infrastructural 
support under the aegis of HiCHiCoB Centre. This manuscript represents CSIR-
IHBT communication number: 4827.

Availability of data and materials
The A-HIOT is available at https://​gitlab.​com/​neeraj-​24/A-​HIOT for details. The 
training and independent datasets are available on repository.

Declarations

Competing interests
The authors declare that there are no competing interests.

Author details
1 Functional Genomics and Complex System Lab, Biotechnology Division,The 
Himalayan Centre for High‑throughput Computational Biology (HiCHiCoB, 
A BIC Supported by DBT, India), CSIR-Institute of Himalayan Bioresource Tech-
nology, Palampur 176061, Himachal Pradesh, India. 2 Academy of Scientific 
and Innovative Research (AcSIR), Ghaziabad 201002, India. 

Received: 19 November 2021   Accepted: 5 July 2022

References
	1.	 Maia EHB, Assis LC, de Oliveira TA et al (2020) Structure-based virtual 

screening: from classical to artificial intelligence. Front Chem. https://​doi.​
org/​10.​3389/​fchem.​2020.​00343

	2.	 Nosengo N (2016) Can you teach old drugs new tricks? Nature 534:314–
316. https://​doi.​org/​10.​1038/​53431​4a

	3.	 Pliakos K, Vens C (2020) Drug-target interaction prediction with tree-
ensemble learning and output space reconstruction. BMC Bioinformatics 
21:1V. https://​doi.​org/​10.​1186/​s12859-​020-​3379-z

	4.	 Méndez-Lucio O, Baillif B, Clevert DA et al (2020) De novo generation 
of hit-like molecules from gene expression signatures using arti-
ficial intelligence. Nat Commun 11:1–10. https://​doi.​org/​10.​1038/​
s41467-​019-​13807-w

	5.	 Iwata H, Sawada R, Mizutani S et al (2015) Large-scale prediction of ben-
eficial drug combinations using drug efficacy and target profiles. J Chem 
Inf Model 55:2705–2716. https://​doi.​org/​10.​1021/​acs.​jcim.​5b004​44

	6.	 Cavasotto CN, Di Filippo JI (2021) Artificial intelligence in the early stages 
of drug discovery. Arch Biochem Biophys 698:108730. https://​doi.​org/​10.​
1016/J.​ABB.​2020.​108730

	7.	 Phatak SS, Stephan CC, Cavasotto CN (2009) High-throughput and in 
silico screenings in drug discovery. Expert Opin Drug Discov 4:947–959. 
https://​doi.​org/​10.​1517/​17460​44090​31909​61

	8.	 McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin 
Chem Biol 11:494–502

	9.	 Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Novel technolo-
gies for virtual screening. Drug Discov Today 9:27–34. https://​doi.​org/​10.​
1016/​S1359-​6446(04)​02939-3

	10.	 Gimeno A, Ojeda-Montes MJ, Tomás-Hernández S et al (2019) The light 
and dark sides of virtual screening: what is there to know? Int J Mol Sci 
20:1375. https://​doi.​org/​10.​3390/​ijms2​00613​75

	11.	 Adeshina YO, Deeds EJ, Karanicolas J (2020) Machine learning classifica-
tion can reduce false positives in structure-based virtual screening. Proc 
Natl Acad Sci U S A 117:18477–18488. https://​doi.​org/​10.​1073/​PNAS.​
20005​85117/​SUPPL_​FILE/​PNAS.​20005​85117.​SAPP.​PDF

	12.	 Ma X, Jia J, Zhu F et al (2009) Comparative analysis of machine learning 
methods in ligand-based virtual screening of large compound libraries. 
Comb Chem High Throughput Screen 12:344–357. https://​doi.​org/​10.​
2174/​13862​07097​88167​944

	13.	 Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based 
virtual screening for drug discovery: principles, applications and recent 
advances. Curr Top Med Chem 14:1923. https://​doi.​org/​10.​2174/​15680​
26614​66614​09291​24445

	14.	 Awuni Y, Mu Y (2015) Reduction of false positives in structure-based vir-
tual screening when receptor plasticity is considered. Molecules 20:5152. 
https://​doi.​org/​10.​3390/​MOLEC​ULES2​00351​52

	15.	 Rifaioglu AS, Atas H, Martin MJ et al (2019) Recent applications of deep 
learning and machine intelligence on in silico drug discovery: methods, 

https://doi.org/10.1186/s13321-022-00630-7
https://doi.org/10.1186/s13321-022-00630-7
https://gitlab.com/neeraj-24/A-HIOT
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.3389/fchem.2020.00343
https://doi.org/10.1038/534314a
https://doi.org/10.1186/s12859-020-3379-z
https://doi.org/10.1038/s41467-019-13807-w
https://doi.org/10.1038/s41467-019-13807-w
https://doi.org/10.1021/acs.jcim.5b00444
https://doi.org/10.1016/J.ABB.2020.108730
https://doi.org/10.1016/J.ABB.2020.108730
https://doi.org/10.1517/17460440903190961
https://doi.org/10.1016/S1359-6446(04)02939-3
https://doi.org/10.1016/S1359-6446(04)02939-3
https://doi.org/10.3390/ijms20061375
https://doi.org/10.1073/PNAS.2000585117/SUPPL_FILE/PNAS.2000585117.SAPP.PDF
https://doi.org/10.1073/PNAS.2000585117/SUPPL_FILE/PNAS.2000585117.SAPP.PDF
https://doi.org/10.2174/138620709788167944
https://doi.org/10.2174/138620709788167944
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.2174/1568026614666140929124445
https://doi.org/10.3390/MOLECULES20035152


Page 20 of 21Kumar and Acharya ﻿Journal of Cheminformatics           (2022) 14:48 

tools and databases. Brief Bioinform 20:1878–1912. https://​doi.​org/​10.​
1093/​bib/​bby061

	16.	 Hoffmann T, Gastreich M (2019) The next level in chemical space naviga-
tion: going far beyond enumerable compound libraries. Drug Discov 
Today 24:1148–1156. https://​doi.​org/​10.​1016/J.​DRUDIS.​2019.​02.​013

	17.	 Reymond JL, Van Deursen R, Blum LC, Ruddigkeit L (2010) Chemical 
space as a source for new drugs. Medchemcomm 1:30–38. https://​doi.​
org/​10.​1039/​C0MD0​0020E

	18.	 Vogt M (2020) How do we optimize chemical space navigation? Expert 
Opin Drug Discov. https://​doi.​org/​10.​1080/​17460​441.​2020.​17303​24

	19.	 Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444
	20.	 Bahi M, Batouche M (2018) Deep learning for ligand-based virtual screen-

ing in drug discovery. In: Proceedings PAIS 2018 international conference 
on pattern analysis and intelligent systemshttps://​doi.​org/​10.​1109/​PAIS.​
2018.​85984​88

	21.	 Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. 
Mach Learn 6:37–66. https://​doi.​org/​10.​1007/​bf001​53759

	22.	 Yang X, Wang Y, Byrne R et al (2019) Concepts of artificial intelligence for 
computer-assisted drug discovery. Chem Rev 119:10520–10594

	23.	 Jiménez-Luna J, Grisoni F, Schneider G (2020) Drug discovery with 
explainable artificial intelligence. Nat Mach Intell 2:573–584. https://​doi.​
org/​10.​1038/​s42256-​020-​00236-4

	24.	 Sánchez-Rodríguez A, Pérez-Castillo Y, Schürer SC et al (2017) From fla-
mingo dance to (desirable) drug discovery: a nature-inspired approach. 
Drug Discov Today 22:1489–1502. https://​doi.​org/​10.​1016/j.​drudis.​2017.​
05.​008

	25.	 Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits 
Syst Mag 6:21–44. https://​doi.​org/​10.​1109/​MCAS.​2006.​16881​99

	26.	 Agrafiotis DK, Cedeño W, Lobanov VS (2002) On the use of neural net-
work ensembles in QSAR and QSPR. J Chem Inf Comput Sci 42:903–911. 
https://​doi.​org/​10.​1021/​CI020​3702

	27.	 Kwon S, Bae H, Jo J, Yoon S (2019) Comprehensive ensemble in QSAR pre-
diction for drug discovery. BMC Bioinformatics 20:1–12. https://​doi.​org/​
10.​1186/​S12859-​019-​3135-4/​FIGUR​ES/4

	28.	 Ponzoni I, Sebastián-Pérez V, Requena-Triguero C et al (2017) Hybrid-
izing feature selection and feature learning approaches in QSAR 
modeling for drug discovery. Sci Reports 71(7):1–19. https://​doi.​org/​10.​
1038/​s41598-​017-​02114-3

	29.	 Zhang L, Ai H, Chen W et al (2017) CarcinoPred-EL: novel models for 
predicting the carcinogenicity of chemicals using molecular finger-
prints and ensemble learning methods. Sci Rep. https://​doi.​org/​10.​
1038/​S41598-​017-​02365-0

	30.	 Patel L, Shukla T, Huang X et al (2020) Machine learning methods in 
drug discovery. Mol 25:5277. https://​doi.​org/​10.​3390/​MOLEC​ULES2​
52252​77

	31.	 Davronov R, Adilova F (2021) A comparative analysis of the ensemble 
methods for drug design. AIP Conf Proc 2365:030001. https://​doi.​org/​
10.​1063/5.​00574​87

	32.	 Cereto-Massagué A, Ojeda MJ, Valls C et al (2015) Molecular fingerprint 
similarity search in virtual screening. Methods 71:58–63. https://​doi.​
org/​10.​1016/j.​ymeth.​2014.​08.​005

	33.	 Kumar A, Zhang KYJ (2018) Advances in the development of shape 
similarity methods and their application in drug discovery. Front Chem 
6:315

	34.	 Ripphausen P, Nisius B, Peltason L, Bajorath J (2010) Quo vadis, virtual 
screening? A comprehensive survey of prospective applications. J Med 
Chem 53:8461–8467. https://​doi.​org/​10.​1021/​jm101​020z

	35.	 Irwin JJ, Shoichet BK (2016) Docking screens for novel ligands conferring 
new biology. J Med Chem 59:4103–4120

	36.	 Salam NK, Nuti R, Sherman W (2009) Novel method for generating 
structure-based pharmacophores using energetic analysis. J Chem Inf 
Model 49:2356–2368. https://​doi.​org/​10.​1021/​ci900​212v

	37.	 Ramsundar B (2016) deepchem.io. https://​github.​com/​deepc​hem/​deepc​
hem

	38.	 Minnich AJ, McLoughlin K, Tse M et al (2020) AMPL: a data-driven 
modeling pipeline for drug discovery. J Chem Inf Model 60:1955–1968. 
https://​doi.​org/​10.​1021/​ACS.​JCIM.​9B010​53

	39.	 Amendola G, Cosconati S (2021) PyRMD: a new fully automated ai-
powered ligand-based virtual screening tool. J Chem Inf Model 61:3845. 
https://​doi.​org/​10.​1021/​ACS.​JCIM.​1C006​53

	40.	 Kimber TB, Chen Y, Volkamer A (2021) Deep learning in virtual screening: 
recent applications and developments. Int J Mol Sci. https://​doi.​org/​10.​
3390/​IJMS2​20944​35

	41.	 Yu C, Deng M, Cheng SY et al (2013) Protein space: a natural method for 
realizing the nature of protein universe. J Theor Biol 318:197–204. https://​
doi.​org/​10.​1016/J.​JTBI.​2012.​11.​005

	42.	 Pereira JC, Caffarena ER, dos Santos CN (2016) Boosting docking-based 
virtual screening with deep learning. J Chem Inf Model 56:2495–2506. 
https://​doi.​org/​10.​1021/​ACS.​JCIM.​6B003​55

	43.	 Gentile F, Agrawal V, Hsing M et al (2020) Deep docking: a deep learning 
platform for augmentation of structure based drug discovery. ACS Cent 
Sci 6:939–949. https://​doi.​org/​10.​1021/​ACSCE​NTSCI.​0C002​29

	44.	 Karimi M, Wu D, Wang Z, Shen Y (2019) DeepAffinity: interpretable deep 
learning of compound–protein affinity through unified recurrent and 
convolutional neural networks. Bioinformatics 35:3329–3338. https://​doi.​
org/​10.​1093/​BIOIN​FORMA​TICS/​BTZ111

	45.	 Vázquez J, López M, Gibert E et al (2020) Merging ligand-based and 
structure-based methods in drug discovery: an overview of combined 
virtual screening approaches. Molecules. https://​doi.​org/​10.​3390/​MOLEC​
ULES2​52047​23

	46.	 Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensem-
bles and their relationship with the ensemble accuracy. Mach Learn 
51:181–207. https://​doi.​org/​10.​1023/A:​10228​59003​006

	47.	 Zhou N, Luo Z, Luo J et al (2001) Structural and functional characteriza-
tion of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by 
mutagenesis and molecular modeling studies. J Biol Chem 276:42826–
42833. https://​doi.​org/​10.​1074/​jbc.​M1065​82200

	48.	 Schioppa T, Uranchimeg B, Saccani A et al (2003) Regulation of the 
chemokine receptor CXCR4 by hypoxia. J Exp Med 198:1391–1402. 
https://​doi.​org/​10.​1084/​jem.​20030​267

	49.	 Bianchi ME, Mezzapelle R (2020) The chemokine receptor CXCR4 in cell 
proliferation and tissue regeneration. Front Immunol 11:1664–2322

	50.	 Kawaguchi N, Zhang T-T, Nakanishi T (2019) Involvement of CXCR4 in 
normal and abnormal development. Cells 8:185. https://​doi.​org/​10.​3390/​
cells​80201​85

	51.	 Ullah TR (2019) The role of CXCR4 in multiple myeloma: Cells’ journey 
from bone marrow to beyond. J Bone Oncol 17:2212–1374. https://​doi.​
org/​10.​1016/j.​jbo.​2019.​100253

	52.	 Mishra RK, Shum AK, Platanias LC et al (2016) Discovery and characteriza-
tion of novel small-molecule CXCR4 receptor agonists and antagonists. 
Sci Rep. https://​doi.​org/​10.​1038/​srep3​0155

	53.	 Debnath B, Xu S, Grande F et al (2013) Small molecule inhibitors of 
CXCR4. Theranostics 3:47–75. https://​doi.​org/​10.​7150/​thno.​5376

	54.	 Das D, Maeda K, Hayashi Y et al (2015) Insights into the mechanism of 
inhibition of CXCR4: identification of piperidinylethanamine analogs 
as anti-HIV-1 inhibitors. Antimicrob Agents Chemother 59:1895–1904. 
https://​doi.​org/​10.​1128/​AAC.​04654-​14

	55.	 Pushpakom S, Iorio F, Eyers PA et al (2018) Drug repurposing: progress, 
challenges and recommendations. Nat Rev Drug Discov 18:41–58. 
https://​doi.​org/​10.​1038/​nrd.​2018.​168

	56.	 O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open 
chemical toolbox. J Cheminform 3:1–14. https://​doi.​org/​10.​1186/​
1758-​2946-3-​33

	57.	 Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. Conforma-
tional energies and geometries for MMFF94. J Comput Chem 17:587–
615. https://​doi.​org/​10.​1002/​(SICI)​1096-​987X(199604)​17:5/​6%​3c587::​
AID-​JCC4%​3e3.0.​CO;2-Q

	58.	 Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful 
decoys, enhanced (DUD-E): Better ligands and decoys for better bench-
marking. J Med Chem 55:6582–6594. https://​doi.​org/​10.​1021/​jm300​687e

	59.	 Yap CW (2011) PaDEL-descriptor: an open source software to calculate 
molecular descriptors and fingerprints. J Comput Chem 32:1466–1474. 
https://​doi.​org/​10.​1002/​jcc.​21707

	60.	 Keogh E, Mueen A (2017) Curse of dimensionality. Encyclopedia of 
machine learning and data mining. Springer, US, pp 314–315

	61.	 Liaw A, news MW-R, 2002 undefined Classification and regression by 
randomForest. researchgate.net

	62.	 Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. 
In: Proceedings of the 22nd ACM SIGKDD international conference on 

https://doi.org/10.1093/bib/bby061
https://doi.org/10.1093/bib/bby061
https://doi.org/10.1016/J.DRUDIS.2019.02.013
https://doi.org/10.1039/C0MD00020E
https://doi.org/10.1039/C0MD00020E
https://doi.org/10.1080/17460441.2020.1730324
https://doi.org/10.1109/PAIS.2018.8598488
https://doi.org/10.1109/PAIS.2018.8598488
https://doi.org/10.1007/bf00153759
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1038/s42256-020-00236-4
https://doi.org/10.1016/j.drudis.2017.05.008
https://doi.org/10.1016/j.drudis.2017.05.008
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/10.1021/CI0203702
https://doi.org/10.1186/S12859-019-3135-4/FIGURES/4
https://doi.org/10.1186/S12859-019-3135-4/FIGURES/4
https://doi.org/10.1038/s41598-017-02114-3
https://doi.org/10.1038/s41598-017-02114-3
https://doi.org/10.1038/S41598-017-02365-0
https://doi.org/10.1038/S41598-017-02365-0
https://doi.org/10.3390/MOLECULES25225277
https://doi.org/10.3390/MOLECULES25225277
https://doi.org/10.1063/5.0057487
https://doi.org/10.1063/5.0057487
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1016/j.ymeth.2014.08.005
https://doi.org/10.1021/jm101020z
https://doi.org/10.1021/ci900212v
https://github.com/deepchem/deepchem
https://github.com/deepchem/deepchem
https://doi.org/10.1021/ACS.JCIM.9B01053
https://doi.org/10.1021/ACS.JCIM.1C00653
https://doi.org/10.3390/IJMS22094435
https://doi.org/10.3390/IJMS22094435
https://doi.org/10.1016/J.JTBI.2012.11.005
https://doi.org/10.1016/J.JTBI.2012.11.005
https://doi.org/10.1021/ACS.JCIM.6B00355
https://doi.org/10.1021/ACSCENTSCI.0C00229
https://doi.org/10.1093/BIOINFORMATICS/BTZ111
https://doi.org/10.1093/BIOINFORMATICS/BTZ111
https://doi.org/10.3390/MOLECULES25204723
https://doi.org/10.3390/MOLECULES25204723
https://doi.org/10.1023/A:1022859003006
https://doi.org/10.1074/jbc.M106582200
https://doi.org/10.1084/jem.20030267
https://doi.org/10.3390/cells8020185
https://doi.org/10.3390/cells8020185
https://doi.org/10.1016/j.jbo.2019.100253
https://doi.org/10.1016/j.jbo.2019.100253
https://doi.org/10.1038/srep30155
https://doi.org/10.7150/thno.5376
https://doi.org/10.1128/AAC.04654-14
https://doi.org/10.1038/nrd.2018.168
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c587::AID-JCC4%3e3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c587::AID-JCC4%3e3.0.CO;2-Q
https://doi.org/10.1021/jm300687e
https://doi.org/10.1002/jcc.21707


Page 21 of 21Kumar and Acharya ﻿Journal of Cheminformatics           (2022) 14:48 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

knowledge discovery and data mining. ACM, New York, NY, USA, pp 
785–794. https://​doi.​org/​10.​1145/​29396​72.​29397​85

	63.	 Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. 
Nucleic Acids Res 28:235–242. https://​doi.​org/​10.​1093/​NAR/​28.1.​235

	64.	 Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability predic-
tion of protein targets for structure- based drug design. Curr Pharm Des 
19:2326–2333. https://​doi.​org/​10.​2174/​13816​12811​31912​0019

	65.	 Chen J, Lai L (2006) Pocket vol 2: further developments on receptor-
based pharmacophore modeling. J Chem Inf Model 46:2684–2691. 
https://​doi.​org/​10.​1021/​ci600​246s

	66.	 Trott O, Olson AJ (2010) Software news and update AutoDock Vina: 
improving the speed and accuracy of docking with a new scoring 
function, efficient optimization, and multithreading. J Comput Chem 
31:455–461. https://​doi.​org/​10.​1002/​jcc.​21334

	67.	 Morris GM, Ruth H, Lindstrom W et al (2009) Software news and updates 
AutoDock4 and AutoDockTools4: automated docking with selective 
receptor flexibility. J Comput Chem. https://​doi.​org/​10.​1002/​jcc.​21256

	68.	 Klekota J, Roth FP (2008) Chemical substructures that enrich for biological 
activity. Bioinformatics 24:2518–2525. https://​doi.​org/​10.​1093/​bioin​forma​
tics/​btn479

	69.	 Salentin S, Schreiber S, Haupt VJ et al (2015) PLIP: fully automated protein-
ligand interaction profiler. Nucleic Acids Res 43:W443–W447. https://​doi.​
org/​10.​1093/​nar/​gkv315

	70.	 Lagarde N, Ben Nasr N, Jérémie A et al (2014) NRLiSt BDB, the manually 
curated nuclear receptors ligands and structures benchmarking data-
base. J Med Chem 57:3117–3125. https://​doi.​org/​10.​1021/​JM500​132P

	71.	 Lo YC, Rensi SE, Torng W, Altman RB (2018) Machine learning in chemoin-
formatics and drug discovery. Drug Discov Today 23:1538–1546. https://​
doi.​org/​10.​1016/j.​drudis.​2018.​05.​010

	72.	 Todeschini R, Consonni V (2010) Molecular descriptors for chemoinfor-
matics. Wiley Blackwell

	73.	 Wolpert DH (1992) Stacked generalization. Neural Netw 5:241–259. 
https://​doi.​org/​10.​1016/​S0893-​6080(05)​80023-1

	74.	 Arimont M, Sun S-L, Leurs R et al (2017) Structural analysis of chemokine 
receptor-ligand interactions. J Med Chem 60:4735. https://​doi.​org/​10.​
1021/​ACS.​JMEDC​HEM.​6B013​09

	75.	 Wu B, Chien EYT, Mol CD et al (2010) Structures of the CXCR4 chemokine 
GPCR with small-molecule and cyclic peptide antagonists. Science 
330:1066–1071. https://​doi.​org/​10.​1126/​scien​ce.​11943​96

	76.	 Qin L, Kufareva I, Holden LG et al (2015) Crystal structure of the 
chemokine receptor CXCR4 in complex with a viral chemokine. Science 
(80-) 347:1117–1122. https://​doi.​org/​10.​1126/​scien​ce.​12610​64

	77.	 Arimont M, Hoffmann C, de Graaf C, Leurs R (2019) Chemokine receptor 
crystal structures: what can be learned from them? Mol Pharmacol 
96:765–777. https://​doi.​org/​10.​1124/​mol.​119.​117168

	78.	 Marchler-Bauer A, Bryant SH (2004) CD-search: protein domain annota-
tions on the fly. Nucleic Acids Res. https://​doi.​org/​10.​1093/​nar/​gkh454

	79.	 Ballester PJ, Schreyer A, Blundell TL (2014) Does a more precise chemical 
description of protein-ligand complexes lead to more accurate predic-
tion of binding affinity? J Chem Inf Model 54:944–955. https://​doi.​org/​10.​
1021/​ci500​091r

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1093/NAR/28.1.235
https://doi.org/10.2174/1381612811319120019
https://doi.org/10.1021/ci600246s
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1093/bioinformatics/btn479
https://doi.org/10.1093/bioinformatics/btn479
https://doi.org/10.1093/nar/gkv315
https://doi.org/10.1093/nar/gkv315
https://doi.org/10.1021/JM500132P
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/j.drudis.2018.05.010
https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1021/ACS.JMEDCHEM.6B01309
https://doi.org/10.1021/ACS.JMEDCHEM.6B01309
https://doi.org/10.1126/science.1194396
https://doi.org/10.1126/science.1261064
https://doi.org/10.1124/mol.119.117168
https://doi.org/10.1093/nar/gkh454
https://doi.org/10.1021/ci500091r
https://doi.org/10.1021/ci500091r

	Machine intelligence-driven framework for optimized hit selection in virtual screening
	Abstract 
	Introduction
	Material and method
	Training and evaluation dataset collection
	Benchmark dataset
	Data preprocessing and input generation for ML model
	CS-driven stacked ensemble architecture
	Active site definition and binding mode sampling
	Fingerprint calculation and DNNs architecture for optimized hits selection
	Training, model validation and benchmark study
	Evaluation metrics
	Comparison with other ML algorithms
	Independent case study

	Results and discussion
	Performance of CS module of A-HIOT and comparison
	Protein cavity and interaction-pattern analysis for PS
	Performance of PS module of A-HIOT and comparison
	Performance of A-HIOT for hitlead identification and optimization on benchmark dataset
	Performance of A-HIOT for hitlead identification and optimization on androgen receptor (AR): case study

	Conclusion
	Acknowledgements
	References




