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Abstract

Graph neural networks (GNNs) have proven to be effective in the prediction of chemical reaction yields. However,
their performance tends to deteriorate when they are trained using an insufficient training dataset in terms

of quantity or diversity. A promising solution to alleviate this issue is to pre-train a GNN on a large-scale molecular
database. In this study, we investigate the effectiveness of GNN pre-training in chemical reaction yield prediction.
We present a novel GNN pre-training method for performance improvement.Given a molecular database consisting
of a large number of molecules, we calculate molecular descriptors for each molecule and reduce the dimensionality
of these descriptors by applying principal component analysis. We define a pre-text task by assigning a vector

of principal component scores as the pseudo-label to each molecule in the database. A GNN is then pre-trained

to perform the pre-text task of predicting the pseudo-label for the input molecule. For chemical reaction yield
prediction, a prediction model is initialized using the pre-trained GNN and then fine-tuned with the training
dataset containing chemical reactions and their yields. We demonstrate the effectiveness of the proposed method
through experimental evaluation on benchmark datasets.

Keywords Chemical reaction yield prediction, Graph neural network, Pre-training, Deep learning

Introduction

A chemical reaction is a process in which reactants are
changed into products through chemical transforma-
tions. The percentage of products obtained relative to
the reactants consumed is referred to as the chemical
reaction yield. The prediction of the chemical reaction
yields provides clues for exploring high-yield chemical
reactions without the need for conducting direct experi-
ments. This is crucial for accelerating synthesis planning
in organic chemistry by significantly reducing time and
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cost. Machine learning has been actively utilized for the
fast and accurate prediction of chemical reaction yields
in a data-driven manner [1-8].

Recently, deep learning has shown remarkable per-
formance in predicting chemical reaction yields by
effectively modeling the intricate relationships between
chemical reactions and their yields using neural net-
works. Schwaller et al. [6, 7] represented a chemical
reaction as a series of simplified molecular-input line-
entry system (SMILES) strings and built a bidirectional
encoder representations from transformers (BERT)
as the prediction model. Kwon et al. [8] represented a
chemical reaction as a set of molecular graphs and built
a graph neural network (GNN) that operates directly on
the molecular graphs as the prediction model. The use of
GNNs s led to a significant improvement in the predictive
performance owing to their high expressive power on
molecular graphs [9, 10].

Despite its effectiveness, the predictive performance
of a GNN can suffer when it is trained on an insufficient
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training dataset in terms of quantity or diversity. For
example, a GNN may not generalize well to query reac-
tions involving substances that are not considered in
the training dataset. Although the performance can be
significantly improved by securing a large-scale train-
ing dataset, this is difficult in practice because of the
high cost associated with conducting direct experi-
ments to acquire the yields for a large number of chem-
ical reactions.

To alleviate this issue, a promising solution is to pre-
train a GNN on a large-scale molecular database and
use it to adapt to chemical reaction yield prediction.
Various pre-training methods have been studied in
the literature, which can be categorized into contras-
tive learning and pre-text task approaches [11, 12]. The
contrastive learning approach pre-trains a GNN by
learning molecular representations such that different
views of the same molecule are mapped close together,
and views of different molecules are mapped far apart
[13-18]. Most existing methods based on this approach
have utilized data augmentation techniques to generate
different views of each molecule. Data augmentation
may potentially alter the properties of the molecules
being represented [19, 20]. The pre-text task approach
acquires the pseudo-labels of molecules and pre-trains
a GNN to predict them [21-25]. Existing methods have
attempted to define appropriate pre-text tasks in vari-
ous ways to effectively learn molecular representations.
The process of acquiring pseudo-labels can be costly
and time-consuming depending on how the pre-text
task is defined. Since both approaches have their own
advantages and drawbacks, it is important to choose
the most suitable pre-training method that best aligns
with the objective of a specific downstream task that
needs to be addressed.

In this study, we propose a novel pre-training method,
MolDescPred, to improve the performance in predict-
ing chemical reaction yields. MolDescPred is based on
the pre-text task approach to pre-train a GNN. Given a
molecular database containing a substantial number of
molecules, we calculate the molecular descriptors for the
molecules and reduce their dimensionality by applying
principal component analysis (PCA). Each molecule is
then pseudo-labeled with a vector of its principal compo-
nent scores. The GNN is then pre-trained to predict the
pseudo-label of its input molecule. For chemical reaction
yield prediction, a prediction model is initialized using
the pre-trained GNN and then is fine-tuned with a train-
ing dataset composed of chemical reactions and their
corresponding yields. Through experiments on bench-
mark datasets, we demonstrate the effectiveness of the
proposed method compared to existing methods, espe-
cially when the training dataset is insufficient.
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Method

Problem definition

For chemical reaction yield prediction, we aim to build an
accurate prediction model f which takes a chemical reac-
tion (R, P) as the input to predict the yield y by learning
from the training dataset D = {(R;, P;, yi)}f\il. Given a
query chemical reaction (R, Py), the prediction model f
can be used to make a prediction for the yield y, as:

It should be noted that additional information, such as
the operating conditions for chemical reactions, can
be utilized as extra input for the model f. If we denote
this additional information by Z, the problem can be
formulated as learning the model f from the dataset
D ={(R:iP; Zi,yi)}?il. The input and output of the
model fcan be described as:

The data representation used for the prediction model
fis as follows. In a chemical reaction (R, P), R and P
denote the sets of reactants and products, respectively.
The set R = {G®1,...,GR"™} contains m reactant mol-
ecules represented as molecular graphs, where m can
vary for each reaction. The set P = {G”} contains a sin-
gle molecular graph representing a product molecule.
Each molecular graph G = (V, £) represents the topology
of a molecule. Here, V and £ are the sets of nodes and
edges associated with heavy atoms and their chemical
bonds within the molecule. Hydrogen atoms are implic-
itly handled as node features of their neighboring heavy
atoms. Each node vector v/ € V denotes the node fea-
tures regarding the j-th heavy atom in a molecule, includ-
ing the atom type, formal charge, degree, hybridization,
number of adjacent hydrogens, valence, chirality, associ-
ated ring sizes, whether it accepts or donates electrons,
whether it is aromatic, and whether it is in a ring. Each
edge vector & € £ denotes the edge features regarding
the chemical bond between j-th and k-th heavy atoms,
including the bond type, stereochemistry, whether it is in
a ring, and whether it is conjugated.

The objective of this study is to improve the per-
formance of the prediction model f, especially in sce-
narios where the training dataset D lacks sufficient
quantity or diversity. To achieve this, the proposed
method MolDescPred employs a three-phase proce-
dure for training the prediction model, as illustrated in
Fig. 1. In the first phase, we define a pre-text task based
on molecular descriptors using a large molecular data-
base. In the second phase, we pre-train a GNN from
the pre-text task. In the third phase, we incorporate the
pre-trained GNN as part of the model f and fine-tune
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Fig. 1 Three-phase procedure for training the prediction model with MolDescPred: (a) Molecular descriptors embedded in a reduced
dimensionality are assigned as pseudo-labels to molecules in the pre-training dataset; (b) A GNN is pre-trained to predict the pseudo-label of each
molecule in the pre-training dataset; (c) After initializing the GNN parameters with the pre-trained ones, the prediction model is fine-tuned using

the training dataset for the target task
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Fig. 2 Procedure of acquiring pseudo-labels for defining a pre-text
task

the model f using the training dataset D. We provide
a detailed description of each phase in the following
subsections.

Pre-text task based on molecular descriptors

Molecular descriptors are numerical representations of
the chemical information of a molecule derived through
logical and mathematical procedures [26]. Molecular
descriptors have been commonly used as inputs for pre-
diction models in a wide range of molecular property
prediction tasks [27-30]. In contrast, we utilize molecu-
lar descriptors to define a pre-text task for pre-training a
GNN. Specifically, molecular descriptors embedded in a
reduced dimensionality are used as pseudo-labels for the
molecules. Fig. 2 illustrates the procedure of acquiring
the pseudo-labels for defining a pre-text task.

Given a molecular database containing a substantial
number of molecules, denoted as S = {g,-}{‘i » we cal-
culate the molecular descriptors using the Mordred cal-
culator [31]. It was originally designed to generate 1,826
molecular descriptors per molecule, including 1,613 2D
and 213 3D descriptors, by leveraging a wide range of

chemical and structural properties. The detailed infor-
mation about the descriptors can be found in [31]. These
descriptors can be efficiently calculated at high speed,
with high scalability to large molecules. We exclude the
3D descriptors, assuming that molecular geometry infor-
mation is not available for use in the database. For each
molecular graph G, a p-dimensional vector of molecular
descriptors d € R? is obtained as:

d = (dy,...,dp) = Mordred(G).

(3)

The molecular descriptor vector d is high-dimensional
and contains redundant information and noise. Thus, we
apply PCA to reduce the dimensionality while preserving
most of the original information [32]. The primary idea
of PCA is to create new features, formed through linear
combinations of the original molecular descriptors,
with the objective of ensuring that these new features
explain most of the variance in the molecular descriptors
and are uncorrelated with each other. The objective is
accomplished by eigendecomposition of the covariance
matrix of the molecular descriptors calculated on S.
This yields g eigenvectors uy,...,uy, called principal
components, corresponding to the largest eigenvalues
A15-..,4q. The j-th eigenvalue 4; represents the variance
explained by the j-th principal component u;. To obtain
a reduced g-dimensional vector (g < p), we project the
original vector d onto the g principal components as:

Z2=1(21,...,2q) = (u{d,...,und),

(4)
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where z; is the principal component score of d obtained
using the j-th principal component.

We establish a pre-text task by assigning each vector z;
as a pseudo-label to the corresponding molecular graph
Gi. Subsequently, the pre-training dataset is formed as

S =Gz,

Pre-training of graph neural network

GNNs have shown remarkable performance in various
prediction tasks in chemistry [9, 10]. GNNs are designed
to operate directly on molecular graphs, enabling them to
learn informative representations by effectively capturing
complex relationships within molecular graphs. Among the
various GNN architectures, we employ the graph isomor-
phism network (GIN) owing to its high expressive power
when applied to molecular graphs and its widespread usage
in the literature for the pre-training of GNNs [11, 33]. Spe-
cifically, we adapt a variant of the GIN proposed by Hu
et al. [21] which incorporates edge features into the input
representation.

The GNN processes an input molecular graph G = (V, £)
as follows. Each node vector v € )V and edge vector
¢/* € £ is embedded into the initial node and edge embed-
dings h’v'(o) and h]e?k using the initial node and edge embed-
ding functions ¢, and ¢,, respectively, as:

W, = ¢, ®)

WS = (). 6)

where ¢, and ¢, are parameterized as neural networks.
Then, we use L message passing layers to iteratively
update the node embeddings by aggregating information
from the neighboring nodes. At the [-th Ilayer
(l=1,...,L), each node embedding h{,'(l) is updated as:

WO =y® (WY + 3 ReLUm; Y 4+ W
kletkeg
7)
where ¢® is the I-th node embedding function
parameterized as a neural network. The final node
embeddings h{,'(L) are combined via average pooling to
extract a graph embedding h, as:

1 .
_ (L)
hy, = vl E h, . ®)
jvey

Finally, the graph embedding h, is processed using a
projection function r to obtain a graph-level molecular
representation vector h as:

h = r(hy) 9)
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In the pre-training of the GNN based on the pre-text
task, we use an auxiliary prediction head to further pro-
cess the graph-level molecular representation vector h
to obtain the prediction of the pseudo-label z. It should
be noted that the prediction head is used only during the
pre-training phase. Fig. 3 illustrates the model architec-
ture for the pre-training of the GNN.

Given the pre-training dataset for the pre-text task
S =1{(Gi, z,')}f\il, the GNN and prediction head are
jointly trained using the loss function £ defined as:

A U
L(z,2) = p > it - )7, (10)
j=1

where /; denotes the eigenvalue obtained using the PCA.

Fine-tuning of prediction model

To build the prediction model f for chemical reaction
yield prediction, we adapt the model architecture and
learning objective presented in Kwon et al’s study [8],
except that we use the GIN architecture for the GNN
component in the model [34]. The model ftakes a chemi-
cal reaction (R, P) and outputs the predictive mean [t
and variance 6 for the yield y as:

(1, 6% =f(R,P).

The prediction model f consists of two main components,
as illustrated in Fig. 4. First, a GNN processes each
molecular graph within the input chemical reaction
to obtain a molecular representation vector. Second, a
prediction head integrates all molecular representation
vectors to make a final prediction. To leverage prior
knowledge acquired by learning the pre-text task, we
initialize the GNN using the parameters obtained from
the pre-training phase.

For training of the model f, the parameters of the
GNN component are initialized using the pre-trained
GNN from the previous subsection, while the remain-
ing parameters are randomly initialized. We are pro-
vided with a training dataset for the target task
D= {(Ri,Pi,yi)}ﬁ.\il, which comprises N chemical
reactions and their yields. The prediction model f is

(11)

Prediction
Head

N>

h
Fig. 3 Model architecture for pre-training of GNN
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Fig. 4 Model architecture for chemical reaction yield prediction [8].
The GNN has the GIN architecture.

fine-tuned using the loss function £ as described in the
referenced study [8]:

A2
o=i?

A2
32 logo“|,

Lo, L6 =0-a)y— ) +a
(12)

where the first and second terms are associated with
the losses under the homoscedastic and heteroscedastic

assumptions, respectively, and o is the hyperparameter
that controls the relative strength of the two terms.

Experiments

Datasets

For pre-training, we used a subset of 10 million mole-
cules extracted from the PubChem database, as provided
by Chithrananda et al’s study [35]. In the experiments,
we excluded molecules that did not pass the sanity check
in RDKit [36]. The molecules consisted of 25.18 heavy
atoms on average, with a range of 1-891.

For chemical reaction yield prediction, we used two
benchmark datasets, Buchwald-Hartwig [2] and Suzuki-
Miyaura [37], which have been commonly used in pre-
vious studies to evaluate the performance of prediction
models [6-8]. The Buchwald-Hartwig dataset was con-
structed through high-throughput experiments on the
class of Pd-catalyzed Buchwald-Hartwig C-N cross-
coupling reactions. It consisted of 3,955 chemical reac-
tions and their experimentally measured yields. These
reactions were generated by combining 15 aryl hal-
ides, 4 ligands, 3 bases, and 23 additives. Each chemi-
cal reaction involved 6 reactants (m = 6). Similarly, the
Suzuki-Miyaura dataset was constructed through high-
throughput experiments on the class of Suzuki-Miyaura
cross-coupling reactions. The chemical reactions were
generated by combinations of 15 couplings of elec-
trophiles and nucleophiles, 12 ligands, 8 bases, and 4
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solvents, resulting in a total of 5,760 chemical reactions
along with their yields. The number of reactants in each
chemical reaction m ranged from 6 to 14. The detailed
operating conditions of the reactions, including tem-
perature and pressure, were not reported in either of the
benchmark datasets.

We evaluated the performance of the prediction model
fin two different scenarios of insufficiency in the training
dataset. In the quantity aspect, we utilized various train-
ing/test split ratios (70/30, 50/50, 30/70, 20/80, 10/90,
5/95, and 2.5/97.5) for both the Buchwald-Hartwig and
Suzuki-Miyaura datasets. To obtain these splits, we used
10 random shuftles provided by Ahneman et al’s study [2]
for the Buchwald-Hartwig dataset and Schwaller et al’s
study [6] for the Suzuki-Miyaura dataset. In the diversity
aspect, we used 4 out-of-sample training/test splits of the
Buchwald-Hartwig dataset provided by Ahneman et al’s
study [2].

Implementation

In the phase of defining the pre-text task, we calculated
1,613 2D molecular descriptors for each molecule using
the Mordred calculator [31]. The list of these 2D descrip-
tors is provided in Additional file 1: Table S1. By elimi-
nating descriptors with more than 10 missing values or
all values being the same, 846 molecular descriptors
remained (p = 846). All molecules with missing descrip-
tors were excluded. Each molecular descriptor was stand-
ardized to have a mean of zero and a standard deviation
of one. We then applied PCA to reduce the dimensional-
ity of the molecular descriptors. We set the dimensional-
ity g to 40, which corresponds to an explained variance
of 70%. Additional file 1: Fig S1 shows the explained vari-
ance according to the reduced dimensionality determined
by the number of principal components. Additional file 1:
Fig S2 visualizes the principal components in relation to
the original molecular descriptors, where each principal
component involved a different mixture of all molecular
descriptors. After dimensionality reduction, each dimen-
sion was clipped to -10 to 10 times its standard deviation
and then re-standardized.

In the pre-training phase, we used a three-layer GIN
architecture (L = 3) for the GNN. For the initial node and
edge embedding functions ¢, and ¢., we used one-layer
fully-connected neural networks with 300 ReLU units
and 300 linear units, respectively. For the node embed-
ding function ¥®, we used a two-layer fully-connected
neural network, where each layer had 300 ReLU units.
At the last message passing layer, we replaced the sec-
ond layer of ¥ ") with 300 linear units. For the projection
function r, we used a one-layer fully-connected neural
network with 1,024 PReLU units. For the auxiliary pre-
diction head, we used a one-layer fully-connected neural
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network served as the output layer. The pre-training was
performed for 10 epochs using the Adam optimizer
with a batch size of 128, a learning rate of 5 - 104, and a
weight decay of 107°.

In the fine-tuning phase of the prediction model f,
we used the pre-trained GNN obtained in the previous
phase as the initialization of the GNN component in
the prediction model f. The fine-tuning was performed
using the Adam optimizer with a batch size of 128 and a
weight decay of 10~°. The learning rate was initially set to
5-107* and decayed to 5- 107> and 5 - 107 at the 400-
th and 450-th epochs, respectively, over the entire 500
epochs.

For the inference of the prediction model f, we used
Monte-Carlo dropout [38], following the referenced
study [8]. Given a query chemical reaction, we generated
30 different predictions by conducting multiple stochas-
tic forward passes through the model fwith dropout acti-
vated. The final prediction for the query was obtained by
averaging them.

Baseline methods

We conducted an exhaustive evaluation of MolDescPred
by comparing its effectiveness with the methods pre-
sented in previous studies on chemical reaction yield pre-
diction. For these methods, we used the configurations
specified in their respective studies.

« Multiple Fingerprint Features (MFF) [4] represents
a chemical reaction as a vector by concatenating
24 different molecular fingerprints, each generated
using RDKit [36]. As a prediction model, it builds a
random forest that takes this vector representation as
input to predict the corresponding reaction yield.

+ YieldBERT [6] represents a chemical reaction as a
reaction SMILES string and fine-tunes a pre-trained
reaction BERT model released by Schwaller et al’s
study [39] for chemical reaction yield prediction.

+ YieldBERT-DA [7] is an improved version of Yield-
BERT, which applies data augmentation based on
molecule permutations and SMILES randomization.

« YieldMPNN [8] represents a chemical reaction as a
set of molecular graphs, similar to our study. It builds
a prediction model based on a message passing neu-
ral network (MPNN) architecture [34]. Despite not
utilizing any prior knowledge from pre-training,
YieldMPNN performed better than YieldBERT and
YieldBERT-DA.

For comparison of MolDescPred to existing pre-
training methods, we evaluated different pre-training
methods for initializing the GNN component in the
prediction model. Compared with MolDescPred, the
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only difference was the manner in which the GNN
was pre-trained. The following pre-training meth-
ods were compared. For all the existing methods, the
GIN was used as the GNN architecture because they
demonstrated superior performance with the GIN in
the experimental results in the previous studies. The
unspecified configurations for training and inference
were set identical to the MolDescPred.

+ From-Scratch initializes all parameters of the model
f randomly without any pre-training. This method
is similar to YieldMPNN, but it replaces the MPNN
with GIN as the GNN architecture. The training
configuration for this method is identical to that of
YieldMPNN.

+ MolICLR [13] pre-trains a GNN based on the con-
trastive learning approach. For data augmentation,
it applies three graph transformation operations to
generate different views of a molecular graph: atom
masking, bond deletion, and sub-graph removal. The
GNN learns molecular representations such that dif-
ferent views of the same molecular graph (i.e., posi-
tive pairs) are close and views of the different molec-
ular graphs (i.e., negative pairs) are far apart. Because
contrastive learning requires a large batch size to
accommodate a large number of negative pairs, we
set the batch size to 512.

+ DGI [14] pre-trains a GNN based on the contras-
tive learning approach. The GNN takes a molecular
graph as an input to produce node embeddings and
a molecular representation vector. A discrimina-
tor is introduced to classify whether a pair of a node
embedding and a molecular representation vector
are associated with the same molecular graph. The
GNN and discriminator are jointly trained such that
the GNN learns molecular representations by maxi-
mizing the mutual information between the local
node embeddings and a global molecular representa-
tion vector. Similar to MolICLR, we set the batch size
to 512.

+ ContextPred [21] pre-trains a GNN based on the
pre-text task approach. For each node in a molecu-
lar graph, it defines a context graph as a sub-graph
surrounding the neighborhood of the node. The main
GNN encodes a molecular graph to obtain node
embeddings that aggregates information across the
neighborhood of the corresponding nodes. An aux-
iliary GNN, called a context GNN, is introduced
to encode each context graph to obtain the context
embedding. The main GNN and context GNN are
jointly trained. The learning objective is the binary
classification of whether a node embedding from the
main GNN and a context embedding from the con-
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text GNN are associated with the same node in the
molecular graph.

« AttrMasking [21] pre-trains a GNN based on the
pre-text task approach. It randomly masks the node
features in a molecular graph and assigns the masked
node features as the node-level pseudo-label to the
molecular graph. The GNN learns to predict the
ground-truth of the masked node features in the
input molecular graph.

In computational aspects, the existing methods require
an auxiliary model to be maintained or involve addi-
tional repetitive operations. MolCLR utilizes graph
transformation operations to create different views
of each molecular graph and forward passes for these
views at each training epoch. DGI requires the mainte-
nance of the discriminator. ContextPred employs the
auxiliary GNN. AttrMasking generates pseudo-labels at
each training epoch. These requirements introduce extra
computational costs during the pre-training phase. On
the other hand, MolDescPred generates pseudo-labels
before pre-training and trains only a single GNN with a
prediction head to predict the fixed pseudo-labels during
pre-training.

Results and discussion

In the random split experiments, we conducted experi-
ments for each training/test split ratio using 10 different
random shuffles. In the out-of-sample split experiments,
we repeated the experiment for each training/test split
5 times with different random seeds. We evaluated the
predictive performance of each method in terms of the
root mean squared error (RMSE), mean absolute error
(MAE), and coefficient of determination (R?) calculated
on the test datasets. We report the average and standard
deviation of the results over repetitions. The best and
second best cases are highlighted in bold and underlined
font, respectively.

Tables 1, 2, and 3 compare the predictive perfor-
mances of the baseline and proposed methods in terms
of RMSE, MAE, and R?, respectively. Figure 5 summa-
rizes the RMSE comparison results using bar plots. In
an overall comparison on various splits of benchmark
datasets, the performance of MolDescPred was either
superior or comparable to that of the baseline meth-
ods. For the random splits of the Buchwald-Hartwig and
Suzuki-Miyaura datasets, MolDescPred performed the
best and the second best on average, respectively. Espe-
cially, the improvement in performance was more sig-
nificant when the size of the training dataset was smaller.
When it comes to the out-of-sample splits of the Buch-
wald-Hartwig dataset, MolDescPred outperformed the
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baseline methods in 3 out of 4 splits. These results dem-
onstrate that MolDescPred performed well under the
insufficiency of the training dataset in terms of quantity
and diversity.

All the existing GNN pre-training methods out-
performed From-Scratch, indicating that the use of
pre-training was helpful in improving the prediction
performance. Among these methods, MolCLR achieved
superior performance for the random splits of both the
Buchwald-Hartwig and Suzuki-Miyaura datasets, but its
performance slightly deteriorated on the out-of-sample
splits of the Buchwald-Hartwig dataset. AttrMasking
showed good performance in some of the out-of-sample
splits. It should be noted that not all pre-training meth-
ods led to meaningful performance improvement and
some of them significantly underperformed Yield MPNN,
implying that it is important to select an appropriate pre-
training method for a specific target prediction task.
Figure. 6 shows the distribution of reaction-wise error
decreases achieved by MolDescPred compared to From-
Scratch and MolCLR, each of which is measured by the
difference between the absolute error of MolDescPred
and that of the compared method. The rightward skew
of each distribution, characterized by a larger blue region
compared to the red region, indicates that MolDescPred
led to performance improvements in a greater number of
chemical reactions within the test dataset.

Among the methods presented in the previous studies,
YieldMPNN performed the best. YieldMPNN outper-
formed From-Scratch, which differs only in the GNN
architecture, by a large margin in most cases. However,
Yield MPNN performed worse than MolDescPred, espe-
cially on the random splits with small training datasets
and out-of-sample splits. MFF showed low overall per-
formance compared to the other methods, but the per-
formance gap narrowed when using a smaller training
dataset. Notably, MFF achieved the best performance on
the 2.5/97.5 split of the Suzuki-Miyaura dataset.

To investigate the effect of the GNN architecture in the
proposed method, we evaluated a variant of the proposed
method, MolDescPred-MPNN, by using the MPNN as
the GNN architecture. It can be considered as the appli-
cation of the proposed pre-training to YieldMPNN.
MolDescPred-MPNN yielded better performance than
YieldMPNN in the random split experiments. While it
performed significantly worse than MolDescPred on the
Buchwald-Hartwig dataset, it surpassed MolDescPred
on the Suzuki-Miyaura dataset. However, MolDescPred-
MPNN performed worse than YieldMPNN in the out-
of-sample split experiments. This indicates that the
proposed method was more effective when used with the
GIN.
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Fig.5 Graphical summary of RMSE comparison results: (a) Buchwald-Hartwig (Random Split), (b) Suzuki-Miyaura (Random Split), (c)
Buchwald-Hartwig (Out-Of-Sample Split)
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Fig. 6 Distribution of reaction-wise error decreases by MolDescPred, compared to From-Scratch and MoICLR: (a) Buchwald-Hartwig (Random
Split), (b) Suzuki-Miyaura (Random Split), (c)Buchwald-Hartwig (Out-Of-Sample Split)

To investigate the effect of the dimensionality of the
pseudo-labels in the proposed method, we conducted a
sensitivity analysis with respect to the explained variance
determined by the number of principal components g.
Figure 7 shows box plots comparing the RMSE reduction
rate relative to the 70% explained variance case across
various explained variances. The detailed comparison
results across different levels of explained variance can be
found in Additional file 1: Table S2. In the random splits

of the Buchwald-Hartwig and Suzuki-Miyaura datasets,
no significant differences in performance were observed.
In the out-of-sample splits of the Buchwald-Hartwig
dataset, while there was no clear tendency, MolDescPred
demonstrated comparable performance at 70% explained
variance. Therefore, it can be concluded that the cur-
rent experimental setting where the dimensionality cor-
responds to 70% explained variance can be a reasonable
choice.
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Fig. 7 Sensitivity analysis regarding the number of principal components used in MolDescPred: (a) Buchwald-Hartwig (Random Split), (b)
Suzuki-Miyaura (Random Split), (c)Buchwald-Hartwig (Out-Of-Sample Split)
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Conclusion

In this study, we presented a GNN pre-training method,
MolDescPred, to improve the performance of chemical
reaction yield prediction. The proposed method defined
a pre-text task by leveraging molecular descriptors. For
a molecular database, we pseudo-labeled each molecule
with its molecular descriptors in a reduced dimensional-
ity obtained through PCA. Using the database, a GNN
was pre-trained to predict the pseudo-label of a molecule.
The pre-trained GNN served as the initialization for the
GNN component of the chemical reaction yield predic-
tion model. By fine-tuning on the target training dataset,
the prediction model achieved improved performance
in predicting the yields of chemical reactions. Through
experimental investigations on benchmark datasets for
chemical reaction yield prediction, we demonstrated the
superior performance of the proposed method over the
baseline methods. The proposed method was more effec-
tive when the training dataset was insufficient in terms of
quantity and diversity.

In contrast to other pre-training methods that involve
repetitions of complex and expensive computations, the
proposed method pre-trains a GNN to perform a simple
prediction task as the pre-text task. Because the molec-
ular descriptors can be efficiently computed on a large
scale, the proposed method can be easily implemented
in practical applications. One important consideration
is that the molecular descriptors used to define the pre-
text task are not equally beneficial for the target predic-
tion tasks. While some descriptors may provide valuable
information, others may be less useful. Guided by this
intuition, a potential avenue for future work to further
enhance the efficiency and effectiveness of the proposed
method is to investigate ways for dynamically selecting
the most advantageous molecular descriptors for specific
target prediction tasks.
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