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Abstract 

Protein-ligand binding affinity plays a pivotal role in drug development, particularly in identifying potential ligands 
for target disease-related proteins. Accurate affinity predictions can significantly reduce both the time and cost 
involved in drug development. However, highly precise affinity prediction remains a research challenge. A key 
to improve affinity prediction is to capture interactions between proteins and ligands effectively. Existing deep-learn-
ing-based computational approaches use 3D grids, 4D tensors, molecular graphs, or proximity-based adjacency matri-
ces, which are either resource-intensive or do not directly represent potential interactions. In this paper, we propose 
atomic-level distance features and attention mechanisms to capture better specific protein-ligand interactions based 
on donor-acceptor relations, hydrophobicity, and π-stacking atoms. We argue that distances encompass both short-
range direct and long-range indirect interaction effects while attention mechanisms capture levels of interaction 
effects. On the very well-known CASF-2016 dataset, our proposed method, named Distance plus Attention for Affin-
ity Prediction (DAAP), significantly outperforms existing methods by achieving Correlation Coefficient (R) 0.909, Root 
Mean Squared Error (RMSE) 0.987, Mean Absolute Error (MAE) 0.745, Standard Deviation (SD) 0.988, and Concordance 
Index (CI) 0.876. The proposed method also shows substantial improvement, around 2% to 37%, on five other bench-
mark datasets. The program and data are publicly available on the website https:// gitlab. com/ mahne wton/ daap.

Scientific Contribution Statement
This study innovatively introducesdistance-based features to predict protein-ligand binding affinity, capitalizing 
onunique molecular interactions. Furthermore, the incorporation of protein sequencefeatures of specific residues 
enhances the model’s proficiency in capturing intricatebinding patterns. The predictive capabilities are further 
strengthened through theuse of a deep learning architecture with attention mechanisms, and an ensembleapproach, 
averaging the outputs of five models, is implemented to ensure robustand reliable predictions.
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Introduction
Conventional drug discovery, as noted by a recent study 
[1], is a resource-intensive and time-consuming process 
that typically lasts for about 10 to 15 years and costs 
approximately 2.558 billion USD to bring each new drug 
successfully to the market. Computational approaches 
can expedite the drug discovery process by identifying 
drug molecules or ligands that have high binding affini-
ties towards disease-related proteins and would thus 
form strong transient bonds to inhibit protein functions 
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[2–4]. In a typical drug development pipeline, a pool of 
potential ligands is usually given, and the ligands exhib-
iting strong binding affinities are identified as the most 
promising drug candidates against a target protein. In 
essence, protein-ligand binding affinity values serve as 
a scoring method to narrow the search space for virtual 
screening [5].

Existing computational methods for protein-ligand 
binding affinity prediction include both traditional 
machine learning and deep learning-based approaches. 
Early methods used Kernel Partial Least Squares [6], Sup-
port Vector Regression (SVR) [7], Random Forest (RF) 
Regression [8], and Gradient Boosting [9]. However, just 
like various other domains [10–14], drug discovery has 
also seen significant recent advancements [15–18] from 
the computational power and extensive datasets used in 
deep learning. Deep learning models for protein-ligand 
binding affinity prediction take protein-ligand docked 
complexes as input and give binding affinity values as 
output. Moreover, these models use various input fea-
tures to capture the global characteristics of the proteins 
and the ligands and their local interactions in the pocket 
areas where the ligands get docked into the proteins.

Recent deep learning models for protein-ligand bind-
ing affinity prediction include DeepDTA [19], Pafnucy 
[20], KDEEP [21], DeepAtom [22], DeepDTAF [23], BAPA 
[5], SFCNN [24], DLSSAffinity [4] EGNA [25], CAPLA 
[26] and ResBiGAAT [27]. DeepDTA [19] introduced a 
Convolutional Neural Network (CNN) model with input 
features Simplified Molecular Input Line Entry System 
(SMILES) sequences for ligands and full-length protein 
sequences. Pafnucy and KDEEP used a 3D-CNN with 4D 
tensor representations of the protein-ligand complexes 
as input features. DeepAtom employed a 3D-CNN to 
automatically extract binding-related atomic interaction 
patterns from voxelized complex structures. DeepDTAF 
combined global contextual features and local binding 
area-related features with dilated convolution to capture 
multiscale long-range interactions. BAPA introduced a 
deep neural network model for affinity prediction, featur-
ing descriptor embeddings and an attention mechanism 
to capture local structural details. SFCNN employed a 
3D-CNN with simplified 4D tensor features having only 
basic atomic type information. DLSSAffinity employed 
1D-CNN with pocket-ligand structural pairs as local fea-
tures and ligand SMILES and protein sequences as global 
features. EGNA introduced an empirical graph neural 
network (GNN) that utilizes graphs to represent pro-
teins, ligands, and their interactions in the pocket areas. 
CAPLA [26] utilized a cross-attention mechanism within 
a CNN along with sequence-level input features for pro-
teins and ligands and structural features for secondary 
structural elements. ResBiGAAT [27] integrates a deep 

Residual Bidirectional Gated Recurrent Unit (Bi-GRU) 
with two-sided self-attention mechanisms, utilizing both 
protein and ligand sequence-level features along with 
their physicochemical properties for efficient prediction 
of protein-ligand binding affinity.

In this work, we consider the effective capturing of 
protein-ligand interaction as a key to making further 
progress in binding affinity prediction. However, as we 
see from the literature, a sequential feature-based model 
such as DeepDTA was designed mainly to capture long-
range interactions between proteins and ligands, not 
considering local interactions. CAPLA incorporates 
cross-attention mechanisms along with sequence-based 
features to indirectly encompass short-range interactions 
to some extent. ResBiGAAT employs a residual Bi-GRU 
architecture and two-sided self-attention mechanisms 
to capture long-term dependencies between protein 
and ligand molecules, utilizing SMILES representations, 
protein sequences, and diverse physicochemical prop-
erties for improved binding affinity prediction. On the 
other hand, structural feature-based models such as Paf-
nucy, KDEEP and SFCNN use 3D grids, 4D tensors, or 
molecular graph representations. These features provide 
valuable insights into the pocket region of the protein-
ligand complexes but incur significant computational 
costs in terms of memory and processing time. Addition-
ally, these features have limitations in capturing long-
range indirect interactions among protein-ligand pairs. 
DLSSAffinity aims to bridge the gap between short- and 
long-range interactions by considering both sequential 
and structural features. Moreover, DLSSAffinity uses 4D 
tensors for Cartesian coordinates and atom-level features 
to represent interactions between heavy atoms in the 
pocket areas of the protein-ligand complexes. These rep-
resentations of interactions are still indirect, considering 
the importance of protein-ligand interaction in binding 
affinity. EGNA tried to use graphs and Boolean-valued 
adjacency matrices to capture protein-ligand interac-
tions to some extent. However, EGNA’s interaction graph 
considers only edges between each pair of a Cβ atom in 
the pocket areas of the protein and a heavy atom in the 
ligand when their distance is below a threshold of 10Å.

Inspired by the use of distance measures in protein 
structure prediction [14, 28, 29], in this work, we employ 
distance-based input features in protein-ligand binding 
affinity prediction. To be more specific, we use distances 
between donor-acceptor [30], hydrophobic [31, 32], 
and π-stacking [31, 32] atoms as interactions between 
such atoms play crucial roles in protein-ligand binding. 
These distance measures between various types of atoms 
could essentially capture more direct and more pre-
cise information about protein-ligand interactions than 
using sequence-based features or various other features 
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representing the pocket areas of the protein-ligand 
complexes. Moreover, the distance values could more 
directly capture both short- and long-range interactions 
than adjacency-based interaction graphs of EGNA or 
tensor-based pocket area representations of DLSSAffin-
ity. Besides capturing protein-ligand interactions, we also 
consider only those protein residues with donor, hydro-
phobic, and π-stacking atoms in this work. Consider-
ing only these selective residues is also in contrast with 
all other methods that use all the protein residues. For 
ligand representation, we use SMILES strings. After con-
catenating all input features, we use an attention mecha-
nism to effectively weigh the significance of various input 
features. Lastly, we enhance the predictive performance 
of our model by adopting an ensembling approach, aver-
aging the outputs of several trained models.

We name our proposed method as Distance plus 
Attention for Affinity Prediction (DAAP). On the very 
well-known CASF-2016 dataset, DAAP significantly out-
performs existing methods by achieving the Correlation 
Coefficient (R) 0.909, Root Mean Squared Error (RMSE) 
0.987, Mean Absolute Error (MAE) 0.745, Standard 
Deviation (SD) 0.988, and Concordance Index (CI) 0.876. 
DAAP also shows substantial improvement, ranging 
from 2% to 37%, on five other benchmark datasets. The 
program and data are publicly available on the website 
https:// gitlab. com/ mahne wton/ daap.

Results
In our study, we first demonstrate the robustness of our 
deep architecture through five-fold cross-validation. 
Subsequently, the learning curve, as depicted in Fig.  1, 
illustrates the dynamics of training and validation loss, 
providing insights into the stability and reliability of the 
learning process. Furthermore, we provide a compre-
hensive performance comparison of our proposed model 
with current state-of-the-art predictors. We also provide 
an in-depth analysis of the experimental results. The 
effectiveness of our proposed features is substantiated 
through an ablation study and a detailed analysis of input 
features.

Five‑fold cross‑validation
This study employs a five-fold cross-validation approach 
to evaluate the performance of the proposed model 
thoroughly, demonstrating the robustness of the deep 
architecture. Table  1 provides the average performance 
metrics (R, RMSE, MAE, SD, and CI) along with their 
corresponding standard deviations derived from the 
5-fold cross-validation on the CASF−2016.290 test set 
when the model is trained with PDBbind2016 and PDB-
bind2020 datasets. This presentation highlights the pre-
dictor’s predictive accuracy and reliability, emphasising 
the proposed model’s effectiveness.

Average ensemble
Our proposed approach leverages an attention-based 
deep learning architecture to predict binding affinity. The 
input feature set comprises distance matrices, sequence-
based features for specific protein residues, and SMILES 
sequences. To enhance the robustness and mitigate the 
effects of variability and overfitting, we train five models 
and employ arithmetic averaging for ensembling. Aver-
age ensembling is more suitable than max voting ensem-
bling when dealing with real values.

Table 2 shows the results of five models and their aver-
ages when all models have the identical setting of their 
training parameters and the training datasets. We see 
that the ensemble results are better than the results of 
the individual models in both the PDBbind2016 and Fig. 1 Training and validation loss curve of DAAP

Table 1 Average results and Standard Deviation (StdDev) from 5-Fold cross-validation on the CASF−2016.290 test set using 
PDBbind2016 and PDBbind2020 datasets

Train Dataset Predictors R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

PDBbind2016 Average 0.845 1.196 0.932 1.198 0.825

StdDev 0.004 0.008 0.006 0.007 0.003

PDBbind2020 Average 0.847 1.183 0.923 1.185 0.827

StdDev 0.002 0.014 0.020 0.014 0.006

https://gitlab.com/mahnewton/daap
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PDBbind2020 training datasets. To check that the pro-
posed approach is robust over the variability in the train-
ing datasets, we also train five models but each with a 
different training subset. These training subsets were 
obtained by using sampling with replacement. Table  3 
shows the results of these five models and their averages.

Tables 2 and 3 depict that the ensemble results are bet-
ter than the results of the individual results in both train-
ing sets. It might seem counterintuitive to see the average 
results are better than all the individual results, but note 
that these are not simple average of averages. When 
the ensemble results are compared across Tables  2 and 
3, the best results are observed in Table 2 for the PDB-
bind2020 training set. All evaluation metrics R, RMSE, 
SD, MAE, and CI display improved performance when 

using the same training data (Table 2) compared to dif-
ferent varying training data (Table  3) in PDBbind2020 
data set. Accordingly, we choose the ensemble with the 
same training data for PDBbind2020 (Table  2) as our 
final binding affinity prediction model. Conversely, for 
PDBbind2016, superior outcomes are obtained from 
the varied training subsets in Table  3. Henceforth, the 
best-performing models using PDBbind2016 and PDB-
bind2020 will be referred to as DAAP16 and DAAP20, 
respectively, in subsequent discussions.

Comparison with state‑of‑the‑art methods
In our comparative analysis, we assess the performance 
of our proposed affinity predictor, DAAP, on the CASF-
2016 test set, compared to nine recent state-of-the-art 

Table 2 Results of five models and their averages when all models were trained using the same training dataset (PDBbind2016 and 
PDBbind2020) of CASF−2016.290

 Higher R and CI values and lower RMSE, MAE, and SD values denote superior performances. The best-performing values are emboldened

Training Dataset Predictors R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

PDBbind2016 Model-1 0.860 1.143 0.899 1.144 0.837

Model-2 0.858 1.152 0.880 1.154 0.835

Model-3 0.851 1.158 0.895 1.160 0.828

Model-4 0.858 1.155 0.917 1.157 0.834

Model-5 0.872 1.094 0.855 1.096 0.843

Ensemble 0.886 1.067 0.836 1.069 0.853
PDBbind2020 Model-1 0.878 1.106 0.858 1.108 0.852

Model-2 0.872 1.120 0.867 1.122 0.845

Model-3 0.851 1.165 0.898 1.167 0.828

Model-4 0.855 1.145 0.852 1.147 0.840

Model-5 0.858 1.133 0.855 1.135 0.839

Ensemble 0.909 0.987 0.745 0.988 0.876

Table 3 Results of five models and their averages when each model is trained on distinct subsets of the training dataset 
(PDBbind2016 and PDBbind2020) for the CASF−2016.290

  Higher R and CI values and lower RMSE, MAE, and SD values denote superior performances. The best-performing values are emboldened

Training Dataset Predictors R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

PDBbind2016 Model-1 0.872 1.094 0.855 1.096 0.843

Model-2 0.857 1.168 0.931 1.170 0.831

Model-3 0.853 1.153 0.906 1.155 0.828

Model-4 0.862 1.138 0.895 1.140 0.838

Model-5 0.853 1.183 0.935 1.185 0.829

Ensemble 0.888 1.061 0.827 1.063 0.853
PDBbind2020 Model-1 0.878 1.106 0.858 1.108 0.852

Model-2 0.869 1.128 0.838 1.130 0.847

Model-3 0.859 1.134 0.840 1.136 0.840

Model-4 0.852 1.193 0.935 1.195 0.826

Model-5 0.856 1.227 0.939 1.230 0.828

Ensemble 0.908 0.999 0.732 1.001 0.874
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predictors: Pafnucy [20], DeepDTA [19], OnionNet [3], 
DeepDTAF [23], SFCNN [24] DLSSAffinity [4], EGNA 
[25], CAPLA [26] and ResBiGAAT [27]. Notably, the 
most recent predictors have surpassed the performance 
of the initial four, prompting us to focus our comparison 
on their reported results. For the latter five predictors, 
we detail the methodology of obtaining their results as 
follows:

DLSSAffinity We rely on the results available on 
DLSSAffinity’s GitHub repository, as direct prediction 
for specific target proteins is not possible due to the una-
vailability of its trained model.

SFCNN Utilizing the provided weights and prediction 
code from SFCNN, we replicate their results, except for 
CASF-2013. The ambiguity regarding the inclusion of 
CASF-2013 data in their training set (sourced from the 
PDBbind database version 2019) leads us to omit these 
from our comparison.

EGNA We have adopted EGNA’s published results for 
the CASF-2016 test set with 285 protein-ligand com-
plexes due to differing Uniclust30 database versions for 
HHM feature construction. We applied EGNA’s code 
with our HHM features for the other five test sets to 
ensure a consistent evaluation framework.

CAPLA Predictions are made based on the features 
given in CAPLA’s GitHub, except for the ADS.74 dataset, 
where we can’t predict results due to the unavailability of 
feature sets. Their results are the same as their reported 
results.

ResBiGAAT  We included ResBiGAAT’s published 
results in our analysis after encountering discrepan-
cies with their online server using the same SMILES 
sequences and protein sequences from test PDB files as 
us. Variations in results, particularly for PDB files with 
multiple chains, led us to rely on their reported data, as 
it yielded more consistent and higher accuracies than our 
attempts.

In Table 4, the first 8 methods, namely Pafnucy, Deep-
DTA, OnionNet, DeepDTAF, DLSSAffinity, SFCNN, 
EGNA∗ and CAPLA reported on 290 CASF-2016 pro-
tein-ligand complexes. To make a fair comparison with 
these 8 methods, we compared our proposed method 
DAAP16 and DAAP20 on those 290 protein-ligand 
complexes. From the data presented in the Table  4, it 
is clear that our DAAP20 approach outperforms all the 
8 predictors, achieving the highest R-value of 0.909, the 
highest CI value of 0.876, the lowest RMSE of 0.987, the 
lowest MAE of 0.745, and the lowest SD of 0.988. Spe-
cifically, compared to the closest state-of-the-art pre-
dictor, CAPLA, our approach demonstrated significant 
improvements, with approximately 5% improvement 
in R, 12% in RMSE, 14% in MAE, 11% in SD, and 4% in 
CI metrics, showcasing its superior predictive capa-
bilities. As 3 of the recent predictors, namely SFCNN, 
EGNA, and ResBiGAAT, reported their result for the 285 
protein-ligand complexes on the CASF-2016 dataset, to 
make a fair comparison with them as well, we assess our 
predictor, DAAP, on these 285 proteins as well. From the 
data presented in Table 4, the results revealed that, across 
all metrics, DAAP20 outperformed these three predic-
tors on 285 proteins as well. Particularly, compared to 
the recent predictor ResBiGAAT, our approach demon-
strated notable improvements, with around 6% improve-
ment in R, 19% in RMSE, 20% in MAE, and 5% in CI 
metrics, highlighting its superior predictive capabilities.

Table 5 presents a comprehensive evaluation of the pre-
diction performance of our proposed DAAP approach on 
five other well-known test sets CASF−2013.87, CASF−
2013.195 ADS.74, CSAR-HiQ.51 and CSAR-HiQ.36. 
Across these test sets, our DAAP approaches demon-
strate superior predictive performance in protein-ligand 
binding affinity. On the CASF−2013.87 dataset, EGNA 
surpasses CAPLA with higher R-value and CI-value 
of 0.752 and 0.767, respectively, while CAPLA records 
lower RMSE, MAE and SD values of 1.512, 1.197, and 
1.521. In contrast, our DAAP20 surpasses both, excelling 
in all metrics with an R of 0.811, RMSE of 1.324, MAE of 
1.043, SD of 1.332, and CI of 0.813, with DAAP16 also 
delivering robust performance. For the CASF−2013.195 
test set, a similar trend is observed with our DAAP20 
approach outperforming the nearest state-of-the-art 
predictor by a significant margin of 8%-20% across all 

Table 4 Comparison of our method with other state-of-the-art 
predictors on the CASF-2016 dataset

EGNA
∗ predicted by using our HHM features

N = 285 indicates that the dataset contains 285 protein-ligand complexes, 
whereas the rest are evaluated with 290 protein-ligand complexes. Missing 
values are indicated by “-”. The best values are emboldened

Predictors R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

Pafnucy 0.775 1.418 1.129 1.375 0.789

DeepDTA 0.749 1.443 1.148 1.445 0.771

OnionNet 0.816 1.278 0.984 1.280 0.811

DeepDTAF 0.789 1.355 1.073 1.337 0.799

DLSSAffinity 0.790 1.400 1.135 1.404 0.795

SFCNN 0.792 1.328 1.030 1.331 0.798

EGNA
∗ 0.785 1.329 1.105 1.332 0.791

CAPLA 0.843 1.200 0.966 1.202 0.820

DAAP16 0.888 1.061 0.827 1.063 0.853

DAAP20 0.909 0.987 0.745 0.988 0.876
SFCNN (N = 285) 0.793 1.326 1.028 1.325 0.799

EGNA (N = 285) 0.842 1.258 0.980 – –

ResBiGAAT (N = 285) 0.853 1.230 0.941 – 0.832

DAAP16 (N = 285) 0.886 1.070 0.837 1.071 0.851

DAAP20 (N = 285) 0.908 0.994 0.753 0.996 0.874
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evaluation metrics. The DAAP16 approach, not DAAP20, 
stands out on the ADS.74 dataset by surpassing predic-
tors like Pafnucy, SFCNN and EGNA, showcasing sub-
stantial improvements of approximately 12%-37% in 
various metrics. When evaluating the CSAR-HiQ.51 
and CSAR-HiQ.36 datasets against six state-of-the-art 
predictors, DAAP20 consistently outperforms all, indi-
cating enhancements of 2%-20% and 3%-31%, respec-
tively. Although DAAP16 does not surpass ResBiGAAT 
in CSAR-HiQ.51, it notably excels in the CSAR-HiQ.36 
dataset, outperforming ResBiGAAT in all metrics except 
MAE. These results underscore the exceptional predic-
tive capabilities of our DAAP approach across diverse 

datasets and evaluation criteria, consistently surpassing 
existing state-of-the-art predictors.

Figure 2 presents the distributions of actual and pre-
dicted binding affinities for our best DAAP approach 
and the closest state-of-the-art predictor. In all six test 
sets, a clear linear correlation and low mean absolute 
error (MAE) between predicted and actual binding 
affinity values can be observed for our DAAP model, 
demonstrating the strong performance of our model 
across these test sets. The other predictors show scat-
tering over larger areas. In our analysis, we could not 
consider ResBiGAAT in the CSAR-HiQ.51 and CSAR-
HiQ.36 datasets due to the unavailability of their 
results.

Table 5 Comparison of our method with other state-of-the-art predictors on additional five test sets

EGNA
∗ predicted by using our HHM features. Missing values are indicated by “-”. The best values are emboldened

Dataset Predictors R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

CASF-2013.87 EGNA
∗ 0.752 1.560 1.263 1.569 0.767

CAPLA 0.716 1.512 1.197 1.521 0.749

DAAP16 0.801 1.328 1.083 1.336 0.801

DAAP20 0.811 1.324 1.043 1.332 0.813
CASF-2013.195 Pafnucy 0.700 1.620 1.320 1.610 –

DeepDTAF 0.608 2.103 1.737 1.787 0.717

EGNA
∗ 0.761 1.451 1.200 1.458 0.772

CAPLA 0.770 1.446 1.154 1.436 0.780

ResBiGAAT 0.769 1.416 1.126 – 0.783

DAAP16 0.830 1.311 1.071 1.314 0.816

DAAP20 0.866 1.203 0.924 1.206 0.846
ADS.74 Pafnucy 0.515 1.465 1.173 1.453 –

SFCNN 0.647 1.363 1.051 1.331 0.725

EGNA
∗ 0.623 1.509 1.211 1.519 0.713

DAAP16 0.827 0.967 0.663 0.974 0.811
DAAP20 0.772 1.109 0.881 1.116 0.783

CSAR-HiQ.51 Pafnucy 0.622 1.944 1.667 1.832 0.698

DeepDTAF 0.606 2.272 1.862 1.860 0.710

SFCNN 0.601 1.864 1.481 1.883 0.705

EGNA
∗ 0.693 1.718 1.329 1.735 0.738

CAPLA 0.686 1.848 1.550 1.701 0.727

ResBiGAAT 0.842 1.407 1.047 – 0.840

DAAP16 0.810 1.417 1.052 1.422 0.810

DAAP20 0.868 1.204 0.845 1.216 0.850
CSAR-HiQ.36 Pafnucy 0.566 1.658 1.291 1.649 0.566

DeepDTAF 0.543 2.765 2.318 1.679 0.670

SFCNN 0.603 1.693 1.329 1.717 0.709

EGNA
∗ 0.680 1.457 1.212 1.478 0.707

CAPLA 0.704 1.454 1.160 1.420 0.760

ResBiGAAT 0.847 1.005 0.784 – 0.820

DAAP16 0.868 1.004 0.758 1.058 0.867

DAAP20 0.879 0.970 0.633 0.984 0.895
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Ablation study and explainability
A significant contribution of this work is utilising dis-
tance matrix input features to capture critical informa-
tion about the protein-ligand relationship. Specifically, 
we employ a concatenation of three distance maps, 

representing donor-acceptor, hydrophobic, and π-stack-
ing interactions, as input features, effectively conveying 
essential protein-ligand bonding details. Following final-
ising our prediction architecture by incorporating two 
additional features derived from protein and SMILES 

Fig. 2 The distributions of real and predicted binding affinity values by our predictor (green) and the closest state-of-the-art predictor (red) 
across the six test sets
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sequences, we conduct an in-depth analysis of the impact 
of various combinations of these distance matrices as fea-
tures. In the case of protein features, residues are selected 
based on which distance maps are considered.

Table 6 illustrates the outcomes obtained from exper-
imenting with different combinations of distance maps 
and selected protein residue and ligand SMILES fea-
tures on the CASF−2016.290 test set. We devise four 
unique combinations, employing three distinct distance 
maps for both the PDBbind2016 and PDBbind2020 
training datasets. Additionally, we explore a combina-
tion that integrates donor-acceptor, hydrophobic, and π
-stacking distance maps with features from all protein 
residues, denoted as DA + π S + HP + FP, to evaluate 
the impact of using all residues versus selected ones.

From the information presented in Table 6, it is evident 
that utilizing the donor-acceptor (DA) solely distance 
maps yields the lowest performance across both training 
sets, particularly when different combinations of distance 
maps are paired with selective protein residues. However, 
as expected, the combination of the three distance maps, 
namely DA, π S ( π-stacking), and HP (Hydrophobicity), 

demonstrates superior performance compared to other 
combinations. Notably, the combination of DA and HP 
outperforms the other two combinations but falls short 
of our best-performing feature set. The ensemble of DA, 
π S, HP and all protein residues exhibit the least favoura-
ble outcomes among the tested combinations. This result 
aligns with our expectations, as Hydrophobic interac-
tions are the most prevalent in protein-ligand binding, 
underscoring their significance in feature analysis.

Integrating an attention mechanism into our model 
is crucial in achieving improved results. After consoli-
dating the outputs of three 1D-CNN blocks, we employ 
attention, each receiving inputs from distance maps, 
protein sequences, and ligand sequences. The dimension 
of the feature is 384. As depicted in Fig. 3, the heatmap 
visualization highlights the differential attention weights 
assigned to various features, with brighter and darker 
regions indicating higher weights to certain features, 
thus improving binding affinity predictions. This pro-
cess underscores the mechanism’s ability to discern and 
elevate critical features, showing that not all features are 
equally important. Further emphasizing the significance 
of attention, a comparative analysis using the same model 
architecture without the attention mechanism on the 
same features-shown in the last row of Table  6 demon-
strates its vital role in boosting predictive accuracy. This 
comparison not only reinforces the value of the atten-
tion mechanism in detecting intricate patterns within the 
feature space but also significantly enhances the model’s 
predictive capabilities.

Table 6 Evaluation metrics for various combinations of distance features on the CASF−2016.290 test set, including donor-acceptor 
(DA) distance matrix, π-stacking ( π S) distance matrix, and hydrophobic (HP) distance matrix between protein and ligand side atoms

The best values are emboldened

Training dataset Predictors R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

PDBbind2016 DA 0.845 1.189 0.950 1.196 0.825

DA + πS 0.846 1.170 0.945 1.173 0.825

DA + HP 0.851 1.159 0.928 1.162 0.827

DA + π S + HP 0.872 1.094 0.855 1.096 0.843
DA + π S + HP + FP 0.837 1.225 0.956 1.227 0.819

PDBbind2020 DA 0.844 1.184 0.939 1.186 0.822

DA + πS 0.846 1.174 0.930 1.176 0.825

DA + HP 0.852 1.168 0.932 1.170 0.826

DA + π S + HP 0.878 1.106 0.858 1.108 0.852
DA + π S + HP + FP 0.840 1.204 0.944 1.206 0.821

PDBbind2016 DA + π S + HP
without Attention

0.845 1.206 0.951 1.209 0.822

PDBbind2020 DA + π S + HP
without Attention

0.848 1.199 0.933 1.202 0.826

Fig. 3 Visualization of attention maps for concatenated features 
in the 1o0h protein-ligand complex of the CASF−2016.290 dataset
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Statistical analysis
In assessing the statistical significance of performance 
differences between DAAP and its closest competitors, 
Wilcoxon Signed Ranked Tests at a 95% confidence level 
were conducted. Comparisons included DAAP against 
CAPLA for CASF−2016.290, CASF−2013.87, CASF−
2013.195, CSAR-HiQ.36, and CSAR-HiQ.51 datasets 
and between DAAP and SFCNN for the ADS.74 test set. 
Unfortunately, ResBiGAAT’s results were unavailable for 
inclusion in the analysis. Table 7 depicts that DAAP dem-
onstrated statistical significance compared to the closest 
state-of-the-art predictor across various test sets, as indi-
cated by p-values ranging from 0.000 to 0.047. The con-
sistently negative mean Z-values, ranging from −14.71 to 
−5.086, suggest a systematic improvement in predictive 
performance. Moreover, higher mean rankings, rang-
ing from 19.5 to 144.5, further emphasize the overall 
superiority of DAAP. Notably, the superior performance 
is observed across diverse datasets, including CASF−
2016.290, CASF−2013.87, CASF−2013.195, ADS.74, 
CSAR-HiQ.51, and CSAR-HiQ.36. These findings under-
score the robustness and effectiveness of DAAP in pre-
dicting protein-ligand binding affinity.

Screening results
In this section, we scrutinize the effectiveness of our pre-
dicted affinity scores to accurately differentiate between 
active binders (actives) and non-binders (decoys) 
throughout the screening procedure. To this end, we have 

carefully curated a subset of seven hand-verified targets 
from the Database of Useful Decoys: Enhanced (DUD-E), 
accessible via https:// dude. docki ng. org, to serve as our 
evaluative benchmark. The details about seven targets are 
given in Table 8. This table underscores the diversity and 
challenges inherent in the dataset, reflecting a wide range 
of D/A ratios that present a comprehensive framework 
for evaluating the discriminatory power of our predicted 
affinity scores.

To construct protein-ligand complexes for these tar-
gets, we employed AutoDock Vina, configuring the 
docking grid to a 20Å× 20Å× 20Å cube centred on the 
ligand’s position. This setup and 32 consecutive Monte-
Carlo sampling iterations identified the optimal pose 
for each molecule pair. Our evaluation of the screening 
performance utilizes two pivotal metrics: the Receiver 
Operating Characteristic (ROC) curve [33] and the 
Enrichment Factor (EF) [34]. Figure  4 shows the ROC 
curve and the EF graph for a detailed examination of a 
predictive model’s efficacy in virtual screening. The 
ROC curve’s analysis, with AUC values spanning from 
0.63 to 0.76 for the seven targets, illustrates our model’s 
proficient capability in differentiating between actives 
and decoys. These values, closely approaching the top-
left corner of the graph, denote a high true positive rate 
alongside a low false positive rate, underscoring our 
model’s efficacy.

Furthermore, the EF graph of Fig.  4 provides a quan-
titative assessment of the model’s success in prioritizing 

Table 7 Summary of Wilcoxon Signed Ranked and Z Tests on six test sets based

Dataset p‑value Mean Z‑value Z‑Std Mean ranking Ranking‑Std

CASF-2016.290 0.000 −14.71 0.029 144.5 83.715

CASF-2013.87 0.014 −7.866 0.054 41.50 24.247

CASF-2013.195 0.015 −12.047 0.036 97.00 56.291

ADS.74 0.000 −7.374 0.058 36.5 21.36

CSAR-HiQ.51 0.009 −6.093 0.069 25.0 14.72

CSAR-HiQ.36 0.040 −5.086 0.072 19.5 10.388

Table 8 Summary of seven targets from DUD-E dataset

Targets name No. of actives(A) No. of decoys(D) D/A ratio

Adenosine A2a receptor (aa2ar) 844 10899 12.90

Thymidylate synthase (tysy) 311 6883 22.13

MAP kinase-activated protein (mapk2) 206 6244 30.31

Cyclin-dependent kinase (cdk2) 798 28328 35.50

Serine/threonine-protein kinase (akt1) 423 16576 39.19

Tyrosine-protein kinase (src) 831 34959 42.07

Beta-lactamase (ampc) 62 2902 46.80

https://dude.docking.org
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active compounds within the top fractions of the dataset, 
notably the top 1% to 10%. Initial EF values ranging from 
12.3 to 9.9 for the top 1% underscore our model’s excep-
tional ability to enrich active compounds beyond ran-
dom chance significantly. This pronounced enrichment 
highlights the model’s utility in the early identification 
of promising candidates. However, the observed gradual 
decline in EF values with increasing dataset fractions 
aligns with expectations, reflecting the challenge of sus-
taining high enrichment levels across broader selections.

Conclusions
In our protein-ligand binding affinity prediction, we 
introduce atomic-level distance map features encom-
passing donor-acceptor, hydrophobic, and π-stacking 
interactions, providing deeper insights into interactions 
for precise predictions, both for short and long-range. 
We enhance our model further with specific protein 
sequence features of specific residues and ligand SMILES 
information. These features are integrated into an atten-
tion-based 1D-CNN architecture that is used a number 
of times for ensemble-based performance enhancement, 
resulting in superior results compared to existing meth-
ods across six benchmark datasets. Remarkably, on 
the CASF-2016 dataset, our model achieves a Correla-
tion Coefficient (R) of 0.909, Root Mean Squared Error 
(RMSE) of 0.987, Mean Absolute Error (MAE) of 0.745, 
Standard Deviation (SD) of 0.988, and Concordance 
Index (CI) of 0.876, signifying its potential to advance 
drug discovery binding affinity prediction. The program 
and data are publicly available on the website https:// git-
lab. com/ mahne wton/ daap.

Methods
We describe the protein-ligand dataset used in our work. 
We also describe our proposed method in terms of its 
input features, output representations, and deep learning 
architectures.

Protein‑ligand datasets
In the domain of protein-ligand binding affinity research, 
one of the primary sources for training, validation, and 
test sets is the widely recognized PDBbind database 
[35]. This database is meticulously curated. It comprises 
experimentally verified protein-ligand complexes. Each 
complex encompasses the three-dimensional structures 
of a protein-ligand pair alongside its corresponding bind-
ing affinities expressed as pKd values. The PDBbind data-
base (http:// www. pdbbi nd. org. cn/) is subdivided into 
two primary subsets: the general set and the refinement 
set. The PDBbind version 2016 dataset (named PDB-
bind2016) contains 9221 and 3685 unique protein-ligand 
complexes, while the PDBbind version 2020 dataset 
(named PDBbind2020) includes 14127 and 5316 protein-
ligand complexes in the general and refinement sets, 
respectively.

Similar to the most recent state-of-the-art affinity pre-
dictors such as Pafnucy [20], DeepDTAF [23], Onion-
Net [3], DLSSAffinity [4], LuEtAl [36], EGNA [25] and 
CAPLA [26], our DAAP16 method is trained using the 
9221 + 3685 = 12906 protein-ligand complexes in the 
general and refinement subsets of the PDBbind dataset 
version 2016. Following the same training-validation set 
formation approach of the recent predictors such as Paf-
nucy, OnionNet, DeepDTAF, DLSSAffinity and CAPLA, 
we put 1000 randomly selected protein-ligand complexes 

Fig. 4 Screening Performance of the Predictive Model: Roc curve (left) and EF (right)

https://gitlab.com/mahnewton/daap
https://gitlab.com/mahnewton/daap
http://www.pdbbind.org.cn/
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in the validation set and the remaining 11906 distinct 
protein-ligand pairs in the training set. Another version 
of DAAP, named DAAP20, was generated using the PDB-
bind database version 2020, which aligns with the training 
set of ResBiGAAT [27]. To avoid overlap, we filtered out 
protein-ligand complexes common between the PDB-
bind2020 training set and the six independent test sets. 
After this filtering process, 19027 unique protein-ligand 
complexes were retained for training from the initial pool 
of 19443 in PDBbind2020.

To ensure a rigorous and impartial assessment of the 
effectiveness of our proposed approach, we employ six 
well-established, independent blind test datasets. There 
is no overlap of protein-ligand complexes between the 
training sets and these six independent test sets.

CASF-2016.290 The 290 protein-ligand complexes, 
commonly referred to as CASF-2016, are selected from 
the PDBbind version 2016 core set (http:// www. pdbbi nd. 
org. cn/ casf. php) and have become the gold standard test 
set for recent affinity predictors such as DLSSAffinity [4], 
LuEtAl [36], EGNA [25] and CAPLA [26].

CASF-2013.87 and CASF-2013.195 Similar to the 
approach taken by DLSSAffinity [4], we carefully curated 
87 unique protein-ligand complexes from the CASF-
2013 dataset, which originally consists of 195 complexes 
(http:// www. pdbbi nd. org. cn/ casf. php). These 87 com-
plexes were chosen to ensure no overlap with our train-
ing set or the CASF-2016 test set. Additionally, we use 
the entire set of 195 complexes as another test set, named 
CASF−2013.195.

ADS.74 This test set from SFCNN [24] comprises 74 
protein-ligand complexes sourced from the Astex diverse 
set [37].

CSAR-HiQ.51 and CSAR-HiQ.36 These two test data-
sets contain 51 and 36 protein-ligand complexes from the 
well-known CSAR [38] dataset. Recent affinity predic-
tors such as EGNA [25], CAPLA and ResBiGAAT [26, 
27] have employed CSAR as a benchmark dataset. To get 
our two test datasets, we have followed the procedure 
of CAPLA and filtered out protein-ligand complexes 
with duplicate PDB IDs from two distinct CSAR sub-
sets containing 176 and 167 protein-ligand complexes, 
respectively.

Input features
Given protein-ligand complexes in the datasets, we 
extract three distinctive features from proteins, ligands, 
and protein-ligand binding pockets. We describe these 
below.

Protein representation
We employ three distinct features for encoding protein 
sequences: one-hot encoding of amino acids, a Hidden 

Markov model based on multiple sequence alignment 
features (HHM), and seven physicochemical properties.

In the one-hot encoding scheme for the 20 standard 
amino acids and non-standard amino acids, each amino 
acid is represented by a 21-dimensional vector. This vec-
tor contains twenty “0 s” and one “1”, where the position 
of the “1” corresponds to the amino acid index in the pro-
tein sequence.

To construct the HHM features, we have run an itera-
tive searching tool named HHblits [39] against the Uni-
clust30 database (http:// wwwus er. gwdg. de/ ~compb iol/ 
unicl ust/ 2020_ 06/) as of June 2020. This process allows 
us to generate HHM sequence profile features for the 
proteins in our analysis. Each resulting .hhm feature file 
contains 30 columns corresponding to various param-
eters such as emission frequencies, transition frequen-
cies, and Multiple Sequence Alignment (MSA) diversities 
for each residue. Like EGNA, for columns 1 to 27, the 
numbers are transformed into frequencies using the for-
mula f = 2−0.001∗p , where f represents the frequency, 
and p is the pseudo-count. This transformation allows 
the conversion of these parameters into frequency val-
ues. Columns 28 to 30 are normalized using the equa-
tion: f =

0.001∗p
20  . This normalization process ensures that 

these columns are appropriately scaled for further analy-
sis and interpretation.

The seven physicochemical properties [14, 29] for each 
amino acid residue are steric parameter (graph shape 
index), hydrophobicity, volume, polarisability, isoelec-
tric point, helix probability, and sheet probability. When 
extracting these three features for protein residues, we 
focused exclusively on the 20 standard amino acid resi-
dues. If a residue is non-standard, we assigned a feature 
value of 0.0.

In our approach, we initially concatenate all three fea-
tures sequentially for the entire protein sequence. Sub-
sequently, to enhance the specificity of our model, we 
employ a filtering strategy where residues lacking donor 
[40], hydrophobic [31], and π-stacking [32] atoms within 
their amino acid side chains are excluded from the analy-
sis. Additionally, to prevent overlap, we select unique 
residues after identification based on donor, hydropho-
bic, or π-stacking atoms for each protein sequence. The 
rationale behind this filtering is to focus on residues that 
are actively involved in critical interactions relevant to 
protein-ligand binding. The resulting feature dimen-
sion for each retained protein residue is 58. This feature 
set includes one-hot encoding of amino acids, a Hidden 
Markov model based on multiple sequence alignment 
features (HHM), and seven physicochemical proper-
ties. These features are comprehensively summarised in 
Table 9 for clarity.

http://www.pdbbind.org.cn/casf.php
http://www.pdbbind.org.cn/casf.php
http://www.pdbbind.org.cn/casf.php
http://wwwuser.gwdg.de/%7ecompbiol/uniclust/2020_06/
http://wwwuser.gwdg.de/%7ecompbiol/uniclust/2020_06/
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Considering the variable numbers of residues that 
proteins can possess, we have considered a standard-
ized protein sequence length to align with the fixed-size 
requirements of deep learning algorithms. In our initial 
experiments exploring various sequence lengths in the 
datasets, we found that a maximum length of 500 yields 
better performance in terms of pearson correlation coef-
ficient (R) and mean absolute error (MAE). If the number 
of selected residues falls below 500, we pad the sequence 
with zeros; conversely, if it exceeds 500, we truncate it to 
500 from the initial position of the sequence. The final 
dimension of each protein is 500× 58.

Ligand representation
We use SMILES to represent ligands. SMILES is a widely 
adopted one-dimensional representation of chemical 
structures of ligands [41]. To convert ligand properties 
such as atoms, bonds, and rings from ligand SDF files 
into SMILES strings, we use the Open Babel chemical 
tool [42]. The SMILES strings comprise 64 unique char-
acters, each corresponding to a specific numeric digit 
ranging from 1 to 64. For example, the SMILES string 
“HC(O=)N” is represented as [12, 42, 1, 48, 40, 31, 14]. In 
line with our protein representation approach, we set a 
fixed length of 150 characters for each SMILES string.

Binding pocket representation
A binding pocket refers to a cavity located either on 
the surface or within the interior of a protein. A bind-
ing pocket possesses specific characteristics that make 
it suitable for binding a ligand [43]. Protein residues 
within the binding pocket region exert a direct influ-
ence, while residues outside this binding site can also 
have a far-reaching impact on affinity prediction. Among 
various protein-ligand interactions within the binding 
pocket regions, donor-acceptor atoms [30], hydropho-
bic contacts [31, 32], and π-stacking [31, 32] interac-
tions are the most prevalent, and these interactions could 
significantly contribute to the enhancement of affinity 

score prediction. The formation of the protein-ligand 
complexes involves donor atoms from the proteins and 
acceptor atoms from the ligands. This process is subject 
to stringent chemical and geometric constraints associ-
ated with protein donor groups and ligand acceptors [30]. 
Hydrophobic interactions stand out as the primary driv-
ing force in protein-ligand interactions, while π-stacking 
interactions, particularly involving aromatic rings, play a 
substantial role in protein-ligand interactions [32]. How-
ever, there are instances where donor-acceptor interac-
tions alone may not suffice, potentially failing to capture 
other interactions that do not conform to traditional 
donor-acceptor patterns. In such scenarios, hydrophobic 
contacts and π-stacking interactions become essential as 
they could provide valuable insights for accurate affinity 
prediction.

We employ three types of distance matrices in our 
work shown in Fig.  5 to capture protein-ligand interac-
tions. The first one is the donor-acceptor distance matrix, 
which considers distances between protein donor atoms 
and acceptor ligand atoms, with data sourced from mol2/
SDF files. We ensure that all ligand atoms contribute to 
the distance matrix construction, even in cases where 
ligands lack explicit acceptor atoms. Furthermore, we 
calculate the hydrophobic distance matrix by measuring 
the distance between hydrophobic protein atoms and 
hydrophobic ligand atoms, ensuring the distance is less 
than 4.5Å [31]. Similarly, we compute the π-stacking dis-
tance matrix by considering protein and ligand π-stack-
ing atoms and applying a distance threshold of 4.0Å [32]. 
These three types of atoms are selected from the heavy 
atoms, referring to any atom that is not hydrogen.

We discretize the initially calculated real-valued dis-
tance matrices representing the three types of interac-
tions into binned distance matrices. These matrices are 
constrained within a maximum distance threshold of 
20Å . The decision to set a maximum distance threshold 
of 20Å for capturing the binding pocket’s spatial context 
is informed by practices in both affinity prediction and 

Table 9 Feature summary for each amino acid residue in proteins, each character of SMILES sequence of ligands, and each atom pair 
of the binding pocket

Each protein could have maximum 500 residues and each ligand SMILES sequence could have maximum 150 charaters

Features Size Values Feature description

Protein one-hot encoding 21 1 or 0 1 corresponds to the amino acid index, otherwise 0

HHM 30 real values various parameters from MSA

physicochemical properties 7 real values steric parameter, hydrophobicity, volume, polarisability, isoelectric point, helix probability, 
sheet probability

Ligand SMILES encoding 1 integer values 64 unique characters, corresponding to a specific numeric digit ranging from 1 to 64

Pocket Distance bins 1 integer values distances between protein and ligand atoms into 41 bins, with each distance correspond-
ing to a numeric digit from 1 to 41
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protein structure prediction fields. Notably, methodolo-
gies like Pafnucy [20], DLSSAffinity [4], and EGNA [25], 
as well as advanced protein structure prediction models 
such as AlphaFold [28] and trRosetta [44], utilize a 20Å 
range to define interaction spaces or predict structures. 
This consensus on the 20Å threshold reflects its suffi-
ciency in providing valuable spatial information neces-
sary for accurate modeling. The distance values ranging 
from 0Å− 20Å are discretized into 40 bins, each with a 
0.5Å interval. Any distance exceeding 20Å is assigned to 
the 41st bin. In our experimentation, we explored differ-
ent distance ranges ( 20Å , 25Å , 30Å , 35Å , and 40Å ) while 
maintaining a uniform bin interval of 0.5Å . Among these 
ranges, 20Å yielded optimal results, and as such, we 
adopted it for our final analysis. Following this binning 
process, the original real-valued distances in the matrices 
are substituted with their corresponding bin numbers. 
Subsequently, we convert the 2D distance matrix into a 
1D feature vector. We concatenate the three 1D vectors 
representing the three distinct interactions into a single 
vector to construct the final feature vector. To ensure 
consistency, the maximum length of the feature vector is 
set to 1000 for each pocket.

Output representations
This binding affinity is measured in the dissociation con-
stant ( Kd ). For simplicity in calculations, the actual affin-
ity score Kd is commonly converted into pKd by taking 
the negative logarithm of Kd.

Deep learning architectures
We propose a deep-learning regression model to pre-
dict protein-ligand binding affinities, shown in Fig.  6. 
Our model comprises three integral components: con-
volutional neural network (CNN), attention mechanism, 
and fully connected neural network (FCNN). Before 
feeding to the CNN block, information from three dis-
tinct feature sources (proteins, ligands, and interactions) 
is encoded and subsequently processed through the 
embedding layer. The embedding layer transforms the 
inputs into fixed-length vectors of a predefined size (in 
this case, 128 dimensions), enabling more effective fea-
ture representation with reduced dimensionality. During 
training, our model operates with a batch size of 16 and 
is optimized using the Adam optimizer and a learning 
rate set at 0.001. We adopt the log cosh loss function 
for this work to optimise the model’s performance. The 

Protein atomsLigand atoms

Ligand
Protein

dij

Fig. 5 Various distance measures that potentially capture protein-ligand interactions. In the figure, dij represents the distance between a donor (D), 
hydrophobic (H), or π-stacking (S) atom i in the protein and the corresponding acceptor (A), hydrophobic (H), or π-stacking (S) atom j in the ligand. 
Empty circles represent other atom types. Different colour lines represent different types of interactions
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training regimen consists of 200 epochs, with the best 
model selected based on the validation loss, and a drop-
out rate of 0.2 is applied. The explored hyperparameter 
settings are summarised in Table  10. We have explored 
these settings, and after preliminary experiments, we 
have selected these values which are emboldened.

Convolutional neural network
Much like DLSSAffinity [4], our model employs three 
1D-CNN blocks, each dedicated to processing distinct 
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Fig. 6 The proposed model architecture

Table 10 Explored hyperparameters for DAAP Tuning

The final hyperparameters are emboldened

Parameter Settings

Number of 1D-CNN filters 16, 32, 64, 128, 256

Filter lengths 2, 4, 6, 8, 12, 16

Number of FC layers 2, 3, 4

Node of FC layer 64, 128, 256
Dropout rate 0.1, 0.2, 0.3

Loss function log cosh, mse
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feature sources: proteins, ligands, and interactions in 
pockets. Each of these 1D-CNN blocks comprises three 
convolutional layers paired with three Maxpooling lay-
ers. The configuration of the first two 1D-CNN blocks 
includes 32, 64, and 128 filters, each with correspond-
ing filter lengths of 4, 8, and 12. In contrast, the 1D-CNN 
block responsible for handling SMILES sequence inputs 
features filters with 4, 6, and 8 adjusted lengths. Each 
of the three 1D-CNN blocks in our model generates a 
128-dimensional output. Subsequently, before progress-
ing to the next stage, the outputs of these three 1D-CNN 
blocks are concatenated and condensed into a unified 
384-dimensional output.

Attention mechanism
In affinity prediction, attention mechanisms serve as cru-
cial components in neural networks, enabling models to 
allocate varying levels of focus to distinct facets of input 
data [5]. These mechanisms play a critical role in weigh-
ing the significance of different features or entities when 
assessing their interaction strength. The attention mech-
anism uses the formula below.

We use the Scaled Dot-Product Attention [45] mecha-
nism to calculate and apply attention scores to the input 
data. The attention mechanism calculates query (Q), key 
(K), and value (V) matrices from the input data. In this 
context, Q is a vector capturing a specific aspect of the 
input, K represents the context or memory of the model 
with each key associated with a value, and V signifies the 
values linked to the keys. It computes attention scores 
using the dot product of Q and K matrices, scaled by the 
square root of the dimensionality ( dk ). Subsequently, a 
softmax function normalises the attention scores. Finally, 
the output is generated as a weighted summation of the 
value (V) matrix, guided by the computed attention 
scores.

Notably, the output of the concatenation layer passes 
through the attention layer. The input to the attention 
layer originates from the output of the concatenation 
layer, preserving the same dimensionality as the input 
data. This design ensures the retention of crucial struc-
tural information throughout the attention mechanism.

Fully connected neural network
The output of the attention layer transitions into the sub-
sequent stage within our model architecture, known as 
the Fully Connected Neural Network (FCNN) block. The 

(1)Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

FCNN block consists of two fully connected (FC) layers, 
where the two layers have 256 and 128 nodes respec-
tively. The final stage in our proposed prediction model is 
the output layer, which follows the last FC layer.

Evaluation metrics
We comprehensively evaluate our affinity prediction 
model using five well-established performance metrics. 
The Pearson Correlation Coefficient (R) [4, 24, 26, 36] 
measures the linear relationship between predicted and 
actual values. The Root Mean Square Error (RMSE) [4, 
24, 26] and the Mean Absolute Error (MAE) [24, 26] 
assess prediction accuracy and error dispersion. The 
Standard Deviation (SD) [4, 24, 26, 36] evaluates pre-
diction consistency, and the Concordance Index (CI) 
[26, 36] determines the model’s ability to rank protein-
ligand complexes accurately. Higher R and CI values 
and lower RMSE, MAE, and SD values indicate better 
prediction accuracy. These metrics are collectively very 
robust measures for comparison of our model’s perfor-
mance against that of the state-of-the-art techniques in 
the field of affinity prediction.

where
N: the number of protein-ligand complexes
Yact : experimentally measured actual binding affinity 

values for the protein-ligand complexes
Ypred : the predicted binding affinity values for the 

given protein-ligand complexes
yacti and ypredi : respectively the actual and predicted 

binding affinity value of the ith protein-ligand complex
a: is slope
b: interpretation of the linear regression line of the 

predicted and actual values. Z: the normalization con-
stant, i.e. the number of data pairs with different label 
values.

(2)

R =

∑N
i=1

(

yacti − Ȳact
)(

ypredi − Ȳpred
)

√

∑N
i=1

(

yacti − Ȳact
)2
√

∑N
i=1

(

ypredi − Ȳpred
)2

RMSE =

√

√

√

√

1

N

N
∑

i=1

(

Ypred − Yact
)2

MAE =
1

N

∑

(

Ypred − Yact
)

aSD =

√

√

√

√

1

N − 1

N
∑

i=1

((

a ∗ ypred + b
)

− yact
)2

CI =
1

Z

∑

yacti>yactj

h
(

ypredi − ypredj

)
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h(u): the step function that returns 1.0, 0.5, and 0.0for 
u > 0 , u = 0 , and u < 0 respectively.
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