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One chiral fingerprint to find them all
Markus Orsi1 and Jean‑Louis Reymond1* 

Abstract  
Molecular fingerprints are indispensable tools in cheminformatics. However, stereochemistry is generally not con‑
sidered, which is problematic for large molecules which are almost all chiral.

Herein we report MAP4C, a chiral version of our previously reported fingerprint MAP4, which lists MinHashes com‑
puted from character strings containing the SMILES of all pairs of circular substructures up to a diameter of four bonds 
and the shortest topological distance between their central atoms. MAP4C includes the Cahn‑Ingold‑Prelog (CIP) 
annotation (R, S, r or s) whenever the chiral atom is the center of a circular substructure, a question mark for undefined 
stereocenters, and double bond cis–trans information if specified. MAP4C performs slightly better than the achiral 
MAP4, ECFP and AP fingerprints in non‑stereoselective virtual screening benchmarks. Furthermore, MAP4C distin‑
guishes between stereoisomers in chiral molecules from small molecule drugs to large natural products and pep‑
tides comprising thousands of diastereomers, with a degree of distinction smaller than between structural isomers 
and proportional to the number of chirality changes. Due to its excellent performance across diverse molecular 
classes and its ability to handle stereochemistry, MAP4C is recommended as a generally applicable chiral molecular 
fingerprint.

Scientific contribution  

The ability of our chiral fingerprint MAP4C to handle stereoisomers from small molecules to large natural products 
and peptides is unprecedented and opens the way for cheminformatics to include stereochemistry as an important 
molecular parameter across all fields of molecular design.
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Introduction
Many computational tasks related to small molecule drug 
discovery, such as similarity searches [1, 2], target predic-
tion [3–7], ligand-based virtual screening [8] and visuali-
zation of large databases of drug-like molecules [9–18], 
can be performed using vectors encoding molecular 
structure, called molecular fingerprints [19, 20]. Remark-
ably, molecular fingerprints work quite well to classify 
and compare bioactive molecules without considering 
stereochemical information, which is somewhat surpris-
ing considering that biological matter is essentially chi-
ral and stereo-defined at the molecular level [21–23], but 
also reflects the fact one only rarely needs to distinguish 
between different stereoisomers of small molecule drugs, 
in part simply because many drug-like compounds are 
achiral.

In the context of developing computational tools for 
new modalities including beyond-Ro5 molecules [24, 25], 
in our case for peptides with variable chain topology and 
stereochemistry [26–28], we have adapted molecular fin-
gerprints based on atom-pairs [29–32] for large molecules 
such as peptides and proteins [33–35]. In particular, we 
combined atom-pair analysis and circular substructures as 
encoded  by the Morgan fingerprint ECFP4 [36, 37], with 
the principle of data compression using MinHashing [38–
41], to design MAP4, a MinHashed Atom-Pair fingerprint. 
MAP4 encodes all possible pairs of circular substructures 
up to a diameter of four bonds in a molecule [42]. These 
pairs are written in the form of two canonicalized SMILES 
[43, 44] separated by the shortest topological distance, 

counted in bonds, between the corresponding pair of cen-
tral atoms. Remarkably, MAP4 distinguishes molecular 
structures across different compound classes spanning 
from small molecules to natural products, peptides and the 
metabolome, for which other fingerprints such as the clas-
sical Morgan (ECFP4) [37] and Atom Pair (AP) [29] finger-
prints fall short. In addition, MAP4 outperforms these and 
many other fingerprints in virtual screening benchmarks 
for both small molecule drugs [20] and peptides [42].

Similarly to commonly used molecular fingerprints how-
ever, MAP4 does not include stereochemistry (cis–trans 
double bonds, enantiomers and diastereomers), which 
is clearly an omission considering that most molecules 
beyond Ro5, such as diverse natural products and synthetic 
compounds in the public databases ChEMBL [45], COCO-
NUT [46], and ZINC [47], are chiral (Fig. 1a). To correct 
this omission and enable the cheminformatic analysis of 
compounds with multiple chiral centers such as carbohy-
drates and peptides, we now report MAP4C, an improved 
version of the MAP4 fingerprint. MAP4C includes the 
description of chiral centers following the Cahn-Ingold-
Prelog (CIP) nomenclature in a fraction of molecular shin-
gles (Fig. 1b, c), as well as double bond stereochemistry.

Methods
Fingerprint design
The chiral version of the MinHashed Atom-Pair finger-
print (MAPC) was implemented in Python using RDKit 
following these steps:
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1. At every non-hydrogen atom, extract all circular 
substructures up to the specified maximum radius 
as isomeric, canonical SMILES. Isomeric informa-
tion (“@” and “@@” characters) is manually removed 
from the extracted SMILES, while the implicit E/Z-
isomerism (“/”, and “\” characters) are maintained. 
Allene chirality and conformational chirality such as 
in biaryls or in helicenes are not considered, as they 
cannot be specified in the SMILES notation. Radius 0 
is skipped.

2. At the specified maximum radius, whenever the cen-
tral atom of a circular substructure is chiral, replace 
the first atom symbol in the extracted SMILES with 
its Cahn-Ingold-Prelog (CIP) descriptor bracketed by 
two “$” characters ($CIP$). The CIP descriptor of the 
chiral atom is defined on the entire molecule, not on 
the extracted substructure.

3. At each radius, generate shingles for all possible pairs 
of extracted substructures. Each shingle contains two 
substructures and their topological distance in fol-

lowing format: “substructure 1 | topological distance 
| substructure 2”.

4. MinHash the list of shingles to obtain a fixed sized 
vector. The MinHashing procedure is explained in 
detail in our previous publication [38, 42].

Benchmark
The virtual screening performance of the MAPC fin-
gerprint was evaluated in a comparative study with 
commonly used fingerprints (ECFP4 [37], ECFP6 [37], 
Atom-Pair [29]) in a benchmark adapted from Riniker 
and Landrum [20]. Since the structure SMILES in the 
original benchmark do not contain any stereochemis-
try, the respective chiral SMILES (when applicable) were 
retrieved from the DUD [48], MUV [49] and ChEMBL 
[45] databases using the provided compound IDs.

Additional 60 peptide sets were included in the 
benchmark to test the performances of the fingerprints 
for large biomolecules. For each of 30 random linear 

Fig. 1 Molecular chirality and fingerprints. a Correlation between chirality and heavy atom count (HAC) across ChEMBL, COCONUT, and ZINC 
datasets. The blue line depicts the percentage of chiral molecules relative to HAC. A steady increase in the percentage of chiral molecules 
is observed with increasing HAC. The yellow line represents the total count of molecules corresponding to each HAC. b Chiral shingle generation 
concept exemplified on a selected atom pair of polymyxin B2. The generated shingle corresponds to the pair of circular substructures (blue) 
separated by the shortest topological distance (red) of their central atoms. Whenever the central atom of a substructure is chiral, the atom symbol 
in the substructure SMILES is replaced by the Cahn‑Ingold‑Prelog (CIP) descriptor (R, S, r, or s), or by a question mark (?) if the stereochemistry 
is not defined, bracketed by two “$” characters (yellow). c Percentage of molecular shingles containing chiral information vs. percentage of chiral 
atoms in the molecule for MAP4C (largest diameter of four bonds). These percentages were computed using a dataset of chiral molecules uniformly 
sampled from the Riniker & Landrum benchmark. The high  r2 and Pearson correlation coefficients underscore a strong association between the two 
variables



Page 4 of 13Orsi and Reymond  Journal of Cheminformatics           (2024) 16:53 

sequences, a set containing 10,000 single-point mutants 
and a set containing 10,000 scrambled versions of the 
random sequence were generated and BLAST analogues 
labelled as actives. The precise generation procedure of 
the peptide datasets is described in our previous publica-
tion [42].

For every set, 5 randomly selected actives were 
extracted and stored in a separate file. The mean and 
standard deviation of pairwise ECFP4C Tanimoto and 
MAP4C Jaccard similarities of the five selected actives 
are reported in the Additional file 1: Figures S1, S2. Each 
of the selected actives was used as a query to rank the 
remaining compounds in the set based on fingerprint 
similarity (Jaccard similarity for MinHashed fingerprints; 
Dice similarity for folded fingerprints). AUC, EF1, EF5, 
BEDROC20, BEDROC100, RIE20 and RIE100 metrics 
were calculated for the obtained ranked lists and aver-
aged along the 5 queries for every set in the benchmark. 
Additionally, the fingerprints were ranked based on the 
obtained performance metrics and finally the average 
rank of each fingerprint determined for all metrics. Pear-
son correlation coefficients and Friedman-Nemenyi post-
hoc tests were calculated for all fingerprint pairs using 
the scipy and scikit-posthocs Python libraries.

Stereoisomers, isomers and scrambled sequences
We enumerated all possible stereoisomers of molecules 
1–14 (Figs.  1c and    4) by generating all possible iso-
meric SMILES combinations, canonicalizing them, and 
removing duplicates. We additionally enumerated all 
possible permutations of ln65 (7) and polymyxin B2 (1) 
sequences, obtaining a total of 330 and 1,512 scrambled 
sequences respectively. Structural isomers of 1,4-diami-
nocyclohexane (15) and aminopiperazine (16) were 
extracted from GDB-13 using the MQN-browser [50, 
51]. The extracted sets contained 203 structural isomers 
of 15, of which 156 contained one or more stereocenters 
and 48 structural isomers of 16, of which 29 contained 
one or more stereocenters. For each structural isomer, all 
possible stereoisomers were generated using the RDKit 
“EnumerateStereoisomers” function, yelding 746 unique 
structures for 15 and 126 for 16. For all stereoisomers 
and permutations, fingerprints were calculated as 2048-
bit vectors.

TMAP
The indices obtained from the MAP4C calculation were 
used to create a locality-sensitive hashing (LSH) forest of 
32 trees. For each molecular structure, the 500 approxi-
mate nearest neighbors in the MAP4C feature space were 
extracted from the LSH forest and used to calculate the 
TMAP layout [16]. The resulting layout was displayed 

in an interactive TMAP using the open-source Faerun 
package [15].

Results and discussion
Encoding stereochemistry in MAP fingerprints
The MAP (MinHashed Atom-Pair) fingerprint of a mol-
ecule consists in a series of MinHashes computed from 
the list of its molecular shingles [38–41]. A molecular 
shingle is written for each possible pair of circular sub-
structures of a given diameter (2 bonds for MAP2, 4 
bonds for MAP4, 6 bonds for MAP6), written as canoni-
calized SMILES, separated by the shortest topological 
distance separating the central atoms, counted in bonds 
[42]. We preserve the Z/E double bond information in 
all shingles whenever the entire double bond is included 
in a shingle. To encode stereocenter information into 
our fingerprints, we label chiral atoms with their Cahn–
Ingold–Prelog (CIP) descriptor (R, S, r or s), as computed 
by RDKit, whenever stereochemistry is defined, or label 
them with a question mark (“?”) if stereochemistry is 
not specified. Importantly, we only apply the chiral label 
when a chiral atom is the central atom of a circular sub-
structure and only for shingles with the largest diameter 
considered. The concept is illustrated for one of the pos-
sible pairs involving the stereocenter in polymyxin B2 (1, 
Fig. 1b).

When applied to a dataset of chiral molecules uni-
formly sampled from the Riniker and Landrum bench-
mark (Additional file 1: Figure S3) [20], we find that the 
percentage of molecular shingles containing chiral infor-
mation is approximately the same as the percentage of 
chiral atoms in a molecule for MAP2C (largest diam-
eter of two bonds, Additional file 1: Figure S4a), MAP4C 
(largest diameter of four bonds, Fig.  1c) and MAP6C 
(largest diameter of six bonds, Additional file  1: Figure 
S4b). Most importantly, chiral information only appears 
in a relatively small fraction of all possible shingles, such 
that any defined stereoisomer of a molecule has a rela-
tively high similarity to the molecule without assigned 
stereochemistry, for which the MAPC fingerprint is iden-
tical to the MAP fingerprint.

Virtual screening benchmark
The relevance of any molecular fingerprint for drug dis-
covery can be tested by attempting to retrieve known 
bioactive compounds for a given target by nearest-neigh-
bor searches from one of the known active compounds 
in a dataset in which the known actives have been mixed 
with so-called decoys. These decoys are molecules 
selected randomly from databases to have similar phys-
ico-chemical properties as the actives, but which are not 
documented to be active on the target. Here we used the 
reference benchmarking dataset of Riniker and Landrum 
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for small molecule drugs [20], which considers 118 active 
and decoy datasets taken from DUD [48], MUV [49], and 
ChEMBL [45]. For larger molecules, we used our previ-
ously reported set of 60 different randomly chosen 10−, 
15− and 20−mer peptides mixed with either random 
single point mutants (30 sets), or sequence scrambled 
analog (30 sets) [42], for which we challenge the finger-
print to retrieve BLAST search analogs [52].

We compared the performance of MAP2C, MAP4C, 
and MAP6C with their respective achiral counterparts, 
as well as with reference binary fingerprints ECFP4, 
ECFP6, and AP, and their corresponding chiral versions 
(ECFP4C, ECFP6C, and APC). The primary objective of 
the benchmark experiment was to ensure that the inclu-
sion of chirality does not compromise the baseline virtual 
screening capabilities of the original MAP fingerprint. 
Indeed, fingerprints in their chiral and non-chiral ver-
sions demonstrated comparable performances across 
various test sets and performance metrics, showing that 
including chirality information was not detrimental to 
fingerprint performance in these benchmarks (Fig. 2a, b 
and Additional file 1: Figure S5–S9).

The ranks of the different fingerprints for the various 
performances measures showed that the MAP finger-
prints performances were slightly ahead of the other fin-
gerprints, with MAP4C appearing with the best ranks in 
the small molecule benchmark and MAP6C in the pep-
tide benchmark (Fig. 2c). However, a pairwise Friedman-
Nemenyi test across all performance metrics showed that 
the difference between chiral over non-chiral fingerprints 
of each type (MAPC vs. MAP, ECFPC vs. ECFP and APC 
vs AP) was not significant (Additional file 1: Figures S10-
16). The only statistically significant differences were 
between groups. For instance, MAP(C) fingerprints sig-
nificantly outperformed ECFP(C) and AP(C) fingerprints 
with exception of AP(C) for the AUC metric. MAP(C) 
fingerprints combine high local precision of circular sub-
structure encoding, akin to ECFPs, with the perception 
of atom pairs reflecting global structural features, akin to 
AP fingerprints. This combination is particularly effec-
tive in scenarios where both local precision and global 
structure are relevant to differentiate between active 
and non-active molecules, possibly explaining the higher 
performance of the MAP(C) fingerprints compared to 
ECFP(C) and AP(C).

Finding all stereoisomers
In addition to be on par with non-chiral fingerprints 
for the above virtual screening benchmarks, one would 
expect a chiral fingerprint to distinguish all possible ste-
reoisomers of a chiral molecule. To test the chiral dif-
ferentiation of our fingerprints, we investigated their 
ability to assign a different fingerprint value for each 

stereoisomer on a series of stereochemically complex 
molecules comprizing carbohydrates, peptides and mac-
rocyclic natural products containing up to thousands of 
stereoisomers per molecule (Fig. 3 and Table 1).

For carbohydrates, both MAP6C and MAP4C readily 
distinguished the 32 stereoisomers of α-D-glucopyranose 
(2), the 1024 stereoisomers of the disaccharide lactose 
(3), the 528 possible stereoisomers of the non-reducing, 
 C2-symmetrical α-diglucoside trehalose (4), the 16,384 
stereoisomers of the aminoglycoside antibiotic valida-
mycin A (5), and the nine possible stereoisomers of the 
signaling carbocyclic sugar myo-inositol (6). By contrast, 
the four other chiral fingerprints tested all fell short in at 
least one of the six cases, and APC failed on all of them.

Our MinHashed fingerprints performed very well 
with peptide stereoisomers. In the case of the antimi-
crobial undecapeptide ln65 (7), a membrane disruptive 
antimicrobial peptide whose activity/toxicity balance 
is modulated by stereochemical variations and which 
motivated the present study [28], the three chiral MAP 
fingerprints distinguished all the 2,048 possible stereoi-
somers. By contrast, ECFP6C only saw about half of them 
and ECFP4C and APC distinguished less than 10%, most 
likely because this peptide is composed of only lysine and 
leucine residues, which reduces the number of possible 
substructures. The chiral MAP fingerprints also distin-
guished the 330 possible sequence-scrambled isomers 
of 7 and the 675,840 possible stereoisomers of sequence-
scrambled isomers of 7. By comparison, APC succeeded 
for the 330 scrambled sequences but failed on the larger 
set, and both chiral ECFPs failed in both cases, which can 
be attributed to the absence of long-range substructures 
in ECFP fingerprints.

The ability of chiral MAP fingerprints to perceive pep-
tide stereoisomers was also well illustrated by their ability 
to distinguish all 512 stereoisomers of the cell-penetrat-
ing peptide nona-arginine (8) [53, 54], as well as the 4096 
stereoisomers of polymyxin B2 (1), used as last resort 
antibiotic against multidrug resistant bacteria [55]. In the 
latter case, our fingerprints also distinguished between 
the 1,512 possible sequence-scrambled isomers of 1, the 
774,144 possible sequence-scrambled stereoisomers of 
1, as well as between the 531,441 possible assignments 
of chirality as R, S, or undefined stereochemistry in the 
12 chiral centers of 1. An undefined stereochemistry cor-
responds to a stereorandomized position accessible by 
chemical synthesis using a racemic amino acid at that 
position (stereorandomization at multiple position can 
lead to partially active analogs as reported for 1) [56]. In 
all of these cases, APC and ECFPCs were unable to dis-
tinguish all possibilities.

Macrocyclic natural products with rotational symme-
tries were particularly challenging for chiral fingerprints. 
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Fig. 2 Virtual Screening benchmark (a) AUC and (b) EF1 of MAP6 (purple), MAP4 (magenta), MAP2 (blue), AP (grey), ECFP6 (orange) and ECFP4 
(yellow) and across all small molecules and peptide targets (80 ChEMBL targets, 21 DUD targets, 17 MUV targets, 30 mutated peptide targets, and 30 
scrambled peptide targets). Chiral fingerprints are displayed as bold lines, non‑chiral fingerprints are displayed as dashed lines. The value displayed 
for each dataset is the mean metric of 5 runs. c Mean ranks of fingerprints across all virtual screening datasets for each metric. Small molecule sets 
(ChEMBL, DUD, MUV) and peptide sets are presented separately to highlight the differences in relative performance
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For instance, only MAP4C and MAP6C correctly identi-
fied the 136 possible stereoisomers of the cyclic peptide 
antibiotic quinaldopeptin (9) and the 2,080 stereoisomers 
of the cytotoxic macrocyclic depsipeptide onchidin (10), 
two natural product macrocycles with  C2 symmetry. By 
contrast, the 528 stereoisomers of the  C2 symmetrical 
antimicrobial macrocyclic peptide gramicidin S (11) were 
only distinguished by MAP6C. Furthermore, none of the 

chiral fingerprints tested was able to cope with the  C3 
symmetrical dodecadepsipeptide antibiotic valinomycin 
(12, 1,376 stereoisomers), the  C4 symmetrical macrolide 
ionophore antibiotic nonactin (13, 16,456 stereoisomers), 
or the C7 symmetrical hepta-arginine cyclic peptide 
NP213 developed as antifungal agent (14, 20 stereoiso-
mers). Note that all fingerprints were used with 2,048-
bits, but that performance did not increase significantly 

N
H OH

OH

OH

OH

OH
OH

O

O
OH

OH
HO

HO

HO

O

HN

O N
O

NH

ON
HO

H
N

O

NH

ON
O

HN

O
H
N

O

N
H

NH2
H2N

HN O

HN

O

O
O

O

O
NO

NHO

NH

O

O
O

O

O
N O

O OH

OH
OH

HO

HO

a-D-glucopyranose (2)

OH
O O

HO

HO
OH

O

OH

OH
OH

HO

Lactose (3)

O

O

O

OH OH
OH

OHOH
HO

HO

HO

Trehalose (4) Validamycin A (5)

OH
OH

HO

HO
OH

OH

myo-inositol (6)

ln65 (7)

Onchidin (10)

Gramicidin S (11)

Valinomycin (12)

Nonactin (13)

Quinaldopeptin (9)

O

H
N

O
O

O NH

O

O

OHN

O
O

O

HN
O

O
O

NHO

O

O

N
H

O

O

O

O

O
O

O

O

O

O

O

O
O

O

N

OH O

H
N

O

N

O
H
N

O

N
Me O

N

HN
O

N

OHO

N
HO

N

ON
HO

N
MeO

N

NH
O

HN

O

HN

NHH2N

H
N

O

H
N

NH

H2N

NHO

NH
HN

H2N

NH

O NH
HN

NH2

N
H

O

NH

HN
NH2

HN
O

N
H

NH

NH2

HN
O

HN NH

H2N

R-R-R-R-R-R-R-R-R

R9 (8)

NP213 (14)

K-K-L-L-K-L-L-K-L-L-L

Fig. 3 Structures of natural products and peptides selected for the stereoisomer distinction task



Page 8 of 13Orsi and Reymond  Journal of Cheminformatics           (2024) 16:53 

when using much larger bit sizes or without MinHashing 
or folding.

Ranking stereoisomers versus isomers
The degree of differentiation between stereoisomers 
should be proportional to the number of stereochemi-
cal changes between any two stereoisomers, and should 
also be smaller than the difference to a different molecule 
such as a structural isomer. We tested the ability of our 
chiral fingerprints for this task for small and large mol-
ecules separately. As a test case for small molecules, we 
computed Jaccard distances between all pairs involving 
the 203 structural isomers of 1,4-diaminocyclohexane 
(15), a ring fragment which is enriched in bioactive mol-
ecules from ChEMBL [57, 58], and between all pairs of 
stereoisomers in the set. We similarly analyzed all pairs 
involving the 48 structural isomers of 4-aminopipera-
zine (16), a similar drug scaffold, and the stereoisomeric 
pairs within the set. Generally, MAPC distances were 
higher than those of other fingerprints. This outcome is 

unsurprising, given that MAPC encodes a notably greater 
number of features, which also contributes to its high 
precision. In both test cases, all six fingerprints ranked 
pairs stereoisomers closer to each other than pairs of 
structural isomers (Fig. 4a/b).

For peptides, we measured Jaccard distances between 
pairs of scrambled-sequence isomers versus pairs of 
stereoisomers with the same sequence for ln65 (7) and 
polymyxin B2 (1). For peptides, the degree of sequence 
similarity can also be measured by the Levenshtein dis-
tance, which represents the minimum number of muta-
tions necessary to transform one sequence into another 
one, considering residue type changes, stereochemi-
cal inversions, insertions and deletions (Fig.  4c/d and 
Additional file  1: Figure S17, S18). Jaccard distances 
generally increased with increasing Levensthein dis-
tances for all fingerprints. Similar to small molecules, 
distances between peptide stereoisomers were smaller 
than between sequence isomers only for chiral MAP 

Table 1 Stereoisomer and scrambled sequence distinction task for selected natural products and peptides with multiple chiral 
centers and varying degrees of internal symmetry

a) Name and nr. of molecule. See Fig. 4 for structural formulae
b) N = number of stereocenters in the molecule. Sym rotational molecular symmetry for the molecule without chiral labels
c) Number of possible stereoisomers considering inversion of all chiral centers in the molecule and the internal symmetry, or number of sequence isomers (scrambled). 
The number of different fingerprint values for each fingerprint type is given in the following columns. All fingerprint were used with 2,048 bit size unless otherwise 
noted
d) all stereocenters in the molecule are considered
e) amino acids are scrambled, the N-terminal fatty acid and the branching Dab residue are maintained
f) only the α-carbon chirality of the scrambled residues was considered here, which corresponds to 512 stereoisomers per scrambled sequence
g) with 4,096 bits, only 135 different FP values are obtained with 2,048 bits due to a bit collision

Querya) N / Sym.b) Totalc) MAP6C MAP4C MAP2C APC ECFP6C ECFP4C

α‑D‑glucopyranose (2) 5 /– 32 32 32 32 11 32 32

Lactose (3) 10 / – 1,024 1,024 1,024 992 443 1,024 1,024

Trehalose (4) 10 /  C2 528 528 528 516 336 528 512

Validamycin A (5) 14 / – 16,384 16,384 16,384 16,384 7,657 16,384 16,384

Inositol (6) 6 /  C6v 9 9 9 9 1 1 1

ln65 (7) 11 / – 2,048 2,048 2,048 2,048 196 1,140 36

ln65 (scrambled) 11 / – 330 330 330 330 330 8 4

ln65 (dia × scrambled) 11 / – 675,840 675,840 675,840 675,840 90,217 38,500 144

R9 (8) 9 / – 512 512 512 512 146 88 12

Polymyxin B2 (1)d) 12 / – 4,096 4,096 4,096 4,096 2,500 4,096 1,536

PMB2 (scrambled)e) 9 / – 1,512 1,512 1,512 1,512 1,512 861 75

PMB2 (dia × scrambled)f ) 9 / – 774,144 774,144 774,144 774,144 287,631 602,003 9,312

PMB2 (R, S or undefined) 12 / – 531,441 531,441 531,441 531,441 277,901 531,441 137,781

Quinaldopeptin (9) 8 /  C2 136 136 g) 136 134 64 132 90

Onchidin (10) 12 /  C2 2,080 2,080 2,080 2,064 469 1,760 810

Gramicidin S (11) 10 /  C2 528 528 504 334 25 448 243

Valinomycin (12) 12 /  C3 1,376 1,250 714 416 112 616 27

Nonactin (13) 16 /  C4 16,456 16,425 16,176 10,045 13,189 6,474 675

NP213 (14) 7 /  C7 20 7 13 17 13 5 3
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fingerprints and APC. However, chiral ECFPs assigned 
larger distances to stereoisomers than to sequence iso-
mers, which probably relates to their inability to distin-
guish many pairs of sequence isomers. For both ln65 
(7) and polymyxin B2 (1), the lower Jaccard distances 
between stereoisomers compared to sequence isomers 
was well visible in TMAP representations of each data-
set constructed using MAP4C as similarity measure 
(Fig.  5a/b) [16]. In both cases, there was a complete 
separation between the 2,048/512 stereoisomers of the 
parent peptide and the 330/1,512 sequence isomers.

Conclusions
In summary, the data above shows that the chiral ver-
sions of MAP fingerprints reported here perform as good 
as their achiral versions in non-stereoselective virtual 
screening benchmarks. Remarkably, our chiral MAP fin-
gerprints are able to distinguish stereoisomers even in 
cases involving up to thousands of stereoisomers where 
the chiral versions of ECFP and AP do not perform well. 
Furthermore, the chiral MAP Jaccard distances between 
enantiomers or stereoisomers are generally shorter than 
for structural isomers, allowing to use chiral MAP fin-
gerprints as a refinement of their achiral version. Because 

Fig. 4 Differentiation between stereoisomers and structural isomers, shown as box plots of average Jaccard distances between pairs 
of stereoisomers (blue) or structural/sequence isomers (yellow). a structural isomers of 1,4‑diaminocyclohexane (203) and 4‑aminopiperidine 
(48) and their diastereomers. The skewed distribution of Jaccard distance of 15 with MAP6C is caused by two outliers exhibiting a distance of 0 
which cannot be represented on the log scale and is likely due to a bit‑clash issue. b sequence isomers (330) or diastereomers (2,048) of ln65 (7) 
as function of the Levenshtein distance separating each pair. c sequence isomers (1,512) or diastereomers (512) of polymyxin B2 (1) as function 
of the Levensthein distance separating each pair. See Figures S10 and S11 for plots with MAP6C, MAP2C and ECFP6C. See methods for details



Page 10 of 13Orsi and Reymond  Journal of Cheminformatics           (2024) 16:53 

MAP4C computes faster than MAP6C due to the small 
number of atom pairs considered, we recommend 
MAP4C as the molecular fingerprint of choice for com-
paring molecules spanning from small drug-like building 
blocks to large natural products and peptides. The abil-
ity of our chiral fingerprint MAP4C to handle stereoiso-
mers from small molecules to large natural products and 

peptides is unprecedented and opens the way for chem-
informatics to include stereochemistry as an important 
molecular parameter across all fields of molecular design.
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AUC   Area under the curve
BEDROC  Boltzmann‑enhanced discrimination of the receiver operating 

characteristic

Fig. 5 MAP4C TMAPs showing the Jaccard distance  (dJ; rainbow) of stereoisomers (blue) and sequence isomers (yellow) towards their respective 
queries: (a) ln65, 2,048 diastereomers and 330 sequence isomers. The interactive version of the TMAP is accessible under https:// tm. gdb. 
tools/ map4/ MAP4C_ ln65/ (b) polymyxin B2, 512 diastereomers and 1,512 sequence isomers. The interactive version of the TMAP is accessible 
under https:// tm. gdb. tools/ map4/ MAP4C_ pmb2/
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