Skip to main content

Table 2 The details of the present KwLPR based QSAR/QSAAR models

From: The kernel-weighted local polynomial regression (KwLPR) approach: an efficient, novel tool for development of QSAR/QSAAR toxicity extrapolation models

Case study

Bandwidth method selection

Bandwidth

Local polynomial's degree

Kernel function

Case study 1

Least Squares Cross-Validation Method

LogP

0.410

0(Constant)

Gaussian

pEC50 (mM) (D. magna)

0.213

nT = 254; R2 = 0.85; RMSEC = 0.60; Q2LOO = 0.79; RMSECV = 0.70

 

nV = 64; Q2F1 = 0.88; Q2F2 = 0.88; Q2F3 = 0.88; CCC = 0.93; RMSEP = 0.54

Case study 2

Expected Kullback–Leibler cross-validation Method

LogP

0.416

0 (Constant)

Gaussian

pEC50 (D. magna)

0.292

nT = 235; R2 = 0.83; RMSEC = 0.66; Q2LOO = 0.79; RMSECV = 0.74

 

nV = 59; Q2F1 = 0.91; Q2F2 = 0.91; Q2F3 = 0.91; CCC = 0.95; RMSEP = 0.48

Case study 3

Least Squares Cross-Validation Method

pEC50 (D. magna)

 

0.357

0 (Constant)

Gaussian

GATS1e

 

0.585

nT = 35; R2 = 0.95; RMSEC = 0.34; Q2LOO = 0.88; RMSECV = 0.51

nV = 15; Q2F1 = 0.83; Q2F2 = 0.83; Q2F3 = 0.83; CCC = 0.90; RMSEP = 0.61

Case study 4

Direct Plug-in Method

pT (T. pyriformis)

0.399

1 (Local linear)

Gaussian

nT = 31; R2 = 0.81; RMSEC = 0.28; Q2LOO = 0.72; RMSECV = 0.34

nV = 10; Q2F1 = 0.83; Q2F2 = 0.82; Q2F3 = 0.83; CCC = 0.91; RMSEP = 0.27

Case study 5

Least Squares Cross-Validation Method

MLOGP

0.417

0 (Constant)

Gaussian

CIC0

0.584

SM1_Dz(Z)

0.512

GATS1i

0.535

NdsCH

0.781

NdssC

0.521

nT = 726; R2 = 0.85; RMSEC = 0.57; Q2CV = 0.57; RMSECV = 0.93

nV = 182; Q2EXT = 0.68; RMSEEXT = 0.87; CCC = 0.79