Dataset
|
Method
|
Regression metrics
|
Classification metrics
|
---|
PCC
|
MAE
|
MSE
|
AUC
|
F1 score
|
Precision
|
Recall
|
---|
Metz
|
ENB
|
0.47
|
0.51
|
0.49
|
0.81
|
0.45
|
0.39
|
0.54
|
EPA
|
0.54
|
0.44
|
0.39
|
0.84
|
0.49
|
0.41
|
0.61
|
Davis
|
ENB
|
0.38
|
1.37
|
0.90
|
0.67
|
0.58
|
0.77
|
0.46
|
EPA
|
0.42
|
1.10
|
0.79
|
0.69
|
0.64
|
0.76
|
0.55
|
PKIS1
|
ENB
|
0.29
|
0.64
|
0.59
|
0.75
|
0.25
|
0.21
|
0.30
|
EPA
|
0.33
|
0.56
|
0.44
|
0.79
|
0.26
|
0.22
|
0.32
|
KinaseSafari
|
ENB
|
0.33
|
1.1
|
2.14
|
0.68
|
0.56
|
0.74
|
0.45
|
EPA
|
0.44
|
1.01
|
1.72
|
0.73
|
0.61
|
0.77
|
0.51
|
MRC
|
ENB
|
0.38
|
0.83
|
1.14
|
0.68
|
0.33
|
0.53
|
0.24
|
EPA
|
0.45
|
0.78
|
0.99
|
0.74
|
0.38
|
0.54
|
0.30
|
- The bold number denotes the better result between ENB and EPA for predicting the corresponding external dataset