Skip to main content

High throughput in-silico screening against flexible protein receptors

Based on the stochastic tunneling method (STUN) [1] we have developed FlexScreen [2], a novel strategy for high-throughput in-silico screening of large ligand databases. Each ligand of the database is docked against the receptor using an all-atom representation of both ligand and receptor. The ligands with the best evaluated affinity are selected as lead candidates for drug development. Using the thymidine kinase inhibitors as a prototypical example we documented [3] the shortcomings of rigid receptor screens in a realistic system. We demonstrate a gain in both overall binding energy and overall rank of the known substrates when two screens with a rigid and flexible (up to 15 sidechain dihedral angles) receptor are compared. We note that the STUN suffers only a comparatively small loss of efficiency when an increasing number of receptor degrees of freedom is considered. FlexScreen thus offers a viable compromise [4] between docking flexibility and computational efficiency to perform fully automated database screens on hundreds of thousands of ligands. We also investigate enrichment rates [5] of rigid, soft and flexible receptor models [6] for 12 diverse receptors using libraries containing up to 13000 molecules. A flexible sidechain model with flexible dihedral angles for up to 12 aminoacids increased both binding propensity and enrichment rates: EF_1 values increased by 35% on average with respect to rigid-docking (3-8 flexible sidechains). This methodology will be soon available for the Cell processor and Pipeline Pilot.


  1. Wenzel W, Hamacher K: Stochastic tunneling approach for global minimization of complex potential energy landscapes. Physical Review Letters. 1999, 82 (15): 3003-3007. 10.1103/PhysRevLett.82.3003.

    CAS  Article  Google Scholar 

  2. Merlitz H, Burghardt B, Wenzel W: Application of the stochastic tunneling method to high throughput database screening. Chemical Physics Letters. 2003, 370 (1-2): 68-73. 10.1016/S0009-2614(02)02012-2.

    CAS  Article  Google Scholar 

  3. Merlitz H, Burghardt B, Wenzel W: Impact of receptor conformation on in silico screening performance. Chemical Physics Letters. 2004, 390 (4-6): 500-505. 10.1016/j.cplett.2004.04.074.

    CAS  Article  Google Scholar 

  4. Fischer B, et al: Accuracy of binding mode prediction with a cascadic stochastic tunneling method. Proteins-Structure Function and Bioinformatics. 2007, 68 (1): 195-204. 10.1002/prot.21382.

    CAS  Article  Google Scholar 

  5. Kokh DB, Wenzel WG: Flexible side chain models improve enrichment rates in in silico screening. Journal of Medicinal Chemistry. 2008, 51 (19): 5919-5931. 10.1021/jm800217k.

    CAS  Article  Google Scholar 

  6. Fischer B, Fukuzawa K, Wenzel W: Receptor-specific scoring functions derived from quantum chemical models improve affinity estimates for in-silico drug discovery. Proteins-Structure Function and Bioinformatics. 2008, 70 (4): 1264-1273. 10.1002/prot.21607.

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Pérez-Sánchez, H., Fischer, B., Kokh, D. et al. High throughput in-silico screening against flexible protein receptors. J Cheminform 2, P23 (2010).

Download citation

  • Published:

  • DOI:


  • Dihedral Angle
  • Dock
  • Thymidine Kinase
  • Tunneling Method
  • Docking Flexibility