Skip to content


  • Poster presentation
  • Open Access

Rational, computer-aided design of multi-target ligands

Journal of Cheminformatics20113 (Suppl 1) :P10

  • Published:


  • Random Forest
  • Isolate System
  • Multiple Target
  • Weak Inhibition
  • Unwanted Side Effect

Over the past two decades the “one drug – one target – one disease” concept became the prevalent paradigm in drug discovery. The main idea of this approach is the identification of a single protein target whose inhibition leads to a successful treatment of the examined disease. The predominant assumption is that highly selective ligands would avoid unwanted side effects caused by binding to secondary non-therapeutic targets.

In recent years the results of post-genomic and network biology showed that proteins rarely act in isolated systems but rather as a part of a highly connected network [1]. In addition this connectivity leads to more robust systems that cannot be interfered by the inhibition of a single target of that network and consequently might not lead to the desired therapeutic effect [2]. Furthermore studies prove that robust systems are rather affected by weak inhibitions of several parts than by a complete inhibition of a single selected element of that system [3].

Therefore there is an increasing interest in developing drugs that take effect on multiple targets simultaneously but is concurrently a great challenge for medicinal chemists. There has to be a sufficient activity on each target as well as an adequate pharmacokinetic profile [4]. Early design strategies tried to link the pharmacophors of known inhibitors, however these methods often lead to high molecular weight and low ligand efficacy.

We present a new rational approach based on a retrosynthetic combinatorial analysis procedure [5] on approved ligands of multiple targets. These RECAP fragments are used to design a large combinatorial library containing molecules featuring chemical properties of each ligand class. The molecules are further validated by machine learning models, like random forests and self-organizing maps, regarding their activity on the targets of interest.

Authors’ Affiliations

Pharmaceutical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany


  1. Jeong H, Mason SP, Barabási AL, Oltvai ZN: Lethality and centrality in protein networks. Nature. 2001, 411: 41-42. 10.1038/35075138.View ArticleGoogle Scholar
  2. Kitano H: Towards a theory of biological robustness. Molecular Systems Biology. 2007, 3: 137-10.1038/msb4100179.View ArticleGoogle Scholar
  3. Agoston V, Csermely P, Pongor S: Multiple weak hits confuse complex systems: a transcriptional regulatory network as an example. Phys Rev E. 2005, 71: 051909-10.1103/PhysRevE.71.051909.View ArticleGoogle Scholar
  4. Morphy R, Rankovic Z: Designing multiple ligands - medicinal chemistry strategies and challenges. Curr Pharm Design. 2009, 15: 587-600. 10.2174/138161209787315594.View ArticleGoogle Scholar
  5. Lewell XQ, Judd DB, Watson SP, Hann MM: RECAP - retrosynthetic combinatorial analysis procedure: a powerful new technique for identifying privileged molecular fragments with useful applications in combinatorial chemistry. J Chem Inf Comput Sci. 1998, 18: 511-522.View ArticleGoogle Scholar