Skip to main content
  • Poster presentation
  • Open access
  • Published:

Assessment of a probabilistic framework for combining structure- and ligand-based virtual screening

A wide variety of structure- and ligand-based virtual screening approaches have been developed that aim at finding potential leads to initiate drug discovery efforts. Since each method has its strengths and weakness, combining the outcome of different structure- and ligand-based approaches can be expected to decrease the number of false positive predictions. However, a reliable fusion of information from different methods is challenging. This holds true in particular for new target structures, where target specific performance experiences are missing.

Here, we assess the performance of a probilistic framework approach [1] that combines structure- and ligand-based information in a meaningful way by assigning probabilities that any two molecules are active. The approach is validated using two popular docking methods (GOLD and AutoDock) and an in-house ligand-based screening approach (ElectroShape [2]). Results of similarity search and docking calculations for the Directory of Useful Decoys (DUD) [3] are combined through rank fusion as well as a probabilistic framework approach.

The study will be used to answer questions such as: How far do the virtual screening-approaches used provide complementary or redundant hit lists? Does the fusion of structure- and ligand-based approaches consistently outperform any single screening metric? Using a probabilistic framework approach, is it possible to obtain a quantification of the confidence that any molecule will be active?


  1. Swann S, Brown S, Muchmore S, Patel H, Merta P, Locklear J, Hajduk P: A unified, probabilistic framework for structure- and ligand-based virtual. J Med Chem. 2011, 54: 1223-1232. 10.1021/jm1013677.

    Article  CAS  Google Scholar 

  2. Armstrong MS, Finn PW, Morris GM, Richards WG: Improving the accuracy of ultrafast ligand-based screening: incorporating lipophilicity into ElectroShape as an extra dimension. J Comput Aided Mol Des. 2011, 25: 785-790. 10.1007/s10822-011-9463-8. doi:10.1007/s10822-011-9463-8

    Article  CAS  Google Scholar 

  3. Huang N, Shoichet BK, Irwin JJ: Benchmarking sets for molecular docking. J Med Chem. 2006, 49: 6789-6801. 10.1021/jm0608356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Simone Fulle.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Fulle, S., Armstrong, S.M., Finn, P.W. et al. Assessment of a probabilistic framework for combining structure- and ligand-based virtual screening. J Cheminform 4 (Suppl 1), P7 (2012).

Download citation

  • Published:

  • DOI: