- Oral presentation
- Open access
- Published:
Limits to molecular matched-pair analysis: the experimental uncertainty case
Journal of Cheminformatics volume 6, Article number: O6 (2014)
Matched-Molecular Pair (MMP) analysis has recently emerged as a data analysis technique in medicinal chemistry. It quickly gained scientific momentum because it tackles key questions in lead optimization. In contrast to classical global QSAR models that attempt to predict the absolute numbers of ADME (absorption, distribution, metabolism, excretion) and toxicological properties, MMP analyses predict the difference in (bio-) chemical properties that can be expected due to small chemical modifications to lead structures, with a much smaller and well-controlled error than global QSAR models.
The power of MMP analysis depends on the number of previously documented similar molecular transformations, whereas the definition of chemical similarity plays a key role: the more generous the definition of similarity of the anchoring region, the more examples are available. The more strict the definition of similarity, the lower the variability and thus the clearer the effect on ADME-Tox parameters, but also the less data pairs will be available [1].
The (bio-) chemical effect and the significance of the results depends on the experimental uncertainty (=noise) in the data. There is a clear mathematical association between the noise level and the minimum activity difference necessary for statistical significance. Here we demonstrate how the experimental uncertainty and variability[2, 3] affect Matched Molecular Pair Analysis. It can be shown that for small sample sizes (Context-specific MMPs), the activity differences have to be very large in order to be statistically significant. A full equation for the estimation of minimum significant activity difference, depending on the number of samples, standard deviation of the measurements and the true variance of the biochemical effect is developed. The influence of consistency of assay setups can directly be quantified via the variability and practical consequences for MMP analysis will be presented.
References
Papadatos G, Alkarouri M, Gillet VJ, Willett P, Kadirkamanathan V, Luscombe CN, Bravi G, Richmond NJ, Pickett SD, Hussain J, Pritchard JM, Cooper AWJ, Macdonald SJF: Lead Optimization Using Matched Molecular Pairs: Inclusion of Contextual Information for Enhanced Prediction of hERG Inhibition, Solubility, and Lipophilicity. J Chem Inf Model. 2010, 50: 1872-1886. 10.1021/ci100258p.
Kramer C, Kalliokoski T, Gedeck P, Vulpetti A: The Experimental Uncertainty of Heterogeneous public Ki Data. J Med Chem. 2012, 55: 5165-5173. 10.1021/jm300131x.
Kalliokoski T, Kramer C, Vulpetti A, Gedeck P: Comparability of Mixed IC50 Data – A Statistical Analysis. PLoS ONE. 2013, 8 (4): e61007-10.1371/journal.pone.0061007.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kramer, C., Liedl, K. Limits to molecular matched-pair analysis: the experimental uncertainty case. J Cheminform 6 (Suppl 1), O6 (2014). https://doi.org/10.1186/1758-2946-6-S1-O6
Published:
DOI: https://doi.org/10.1186/1758-2946-6-S1-O6