Skip to main content
  • Poster presentation
  • Open access
  • Published:

Charge-related topological index – various chemoinformatics applications

We present several useful applications of the CTI index in the context of various chemoinformatics tasks. Charge-related Topological Index (CTI) was introduced initially by Bangov for solving the problem of 2D structure isomorphism within the computer-assisted structure generation from a gross formula [1]. CTI is a real number defined as a sum over all atom pairs: where D ij is the inter-atomic topological distance and is a local atom index (a characteristics of atom i) calculated from the atom valence, L 0,i , the number of hydrogen atoms attached to atom, N H,i , and q i which is the corresponding charge density. The partial charges are computed by the topological empirical method of Gasteiger-Marsili [2] calculated with a fixed number of iterations. The CTI index could be used for 3D structure and conformer perception [3] in the following form: where R ij is the geometrical distance (in the latter case the charges could be also obtained from quantum chemistry programs on a semi-empirical level). Respectively, L i values could be employed to the perception of the structure symmetry and topological equivalence. In our latest study we proved the capabilities of CTI index for perception of duplicated structures in large structure collections [4]. It is shown that the CTI index can be safely used for a quick perception of the duplicated structures in large databases in a very fast identity (full structure) search. CTI index with a precision of 10 digits after decimal point can be used in databases with millions of compounds. It has been also shown that CTI can be used as a useful descriptor well describing both the structure branching and some electronic properties [3].


  1. Bangov I: Computer-assisted structure generation from a gross formula. 3. Alleviation of the combinatorial problem. J Chem Inf Comput Sci. 1990, 30: 277-289. 10.1021/ci00067a012.

    Article  CAS  Google Scholar 

  2. Gasteiger J, Marsili M: Iterative partial equalization of orbital electronegativity – a rapid access to atomic charges. Tetrahedron. 1980, 36: 3219-3228. 10.1016/0040-4020(80)80168-2.

    Article  CAS  Google Scholar 

  3. Bangov I, Moskovkina M, Patleeva A: Charge-related molecular index (CMI), a novel descriptor for quantitative structure/property relationship (QSPR) models. I. General considerations. Bulg Chem Commun. 2010, 42: 338-342.

    CAS  Google Scholar 

  4. Petrov E, Stoyanov B, Kochev N, Bangov I: Use of CTI Index for Perception of Duplicated Chemical Structures in Large Chemical Databases. MATCH. 2013, accepted for publication

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nikolay T Kochev.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article

Kochev, N.T., Bangov, I., Petrov, E. et al. Charge-related topological index – various chemoinformatics applications. J Cheminform 6 (Suppl 1), P7 (2014).

Download citation

  • Published:

  • DOI: