Vazquez M, Krallinger M, Leitner F, Valencia A: Text mining for drugs and chemical compounds: methods, tools and applications. Molecular Informatics. 2011, 30 (6-7): 506-519. 10.1002/minf.201100005.
Article
CAS
Google Scholar
Jensen LJ, Saric J, Bork P: Literature mining for the biologist: from information retrieval to biological discovery. Nature reviews genetics. 2006, 7 (2): 119-129. 10.1038/nrg1768.
Article
CAS
Google Scholar
Krallinger M, Leitner F, Valencia A: Analysis of biological processes and diseases using text mining approaches. Bioinformatics Methods in Clinical Research Humana Press. 2010, 341-382.
Chapter
Google Scholar
Fontaine J-F, Barbosa-Silva A, Schaefer M, Huska MR, Muro EM, Andrade-Navarro MA: Medlineranker: flexible ranking of biomedical literature. Nucleic acids research. 2009, 37 (suppl 2): 141-146.
Article
Google Scholar
Smith L, Tanabe LK, Ando RJ, Kuo CJ, Chung IF, Hsu CN, Lin YS, Klinger R, Friedrich CM, Ganchev K, Torii M, Liu H, Haddow B, Struble CA, Povinelli RJ, Vlachos A, Baumgartner WA, Hunter L, Carpenter B, Tsai RT, Dai HJ, Liu F, Chen Y, Sun C, Katrenko S, Adriaans P, Blaschke C, Torres R, Neves M, Nakov P, Divoli A, Mana-Lopez M, Mata J, Wilbur WJ: Overview of BioCreative II gene mention recognition. Genome Biol. 2008, 9 (Suppl 2): 2-10.1186/gb-2008-9-s2-s2.
Article
Google Scholar
Krallinger M, Valencia A: Applications of text mining in molecular biology, from name recognition to protein interaction maps. Data Analysis and Visualization in Genomics and Proteomics. 2005, 43
Google Scholar
Krallinger M, Valencia A, Hirschman L: Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol. 2008, 9 (Suppl 2): 8.-10.1186/gb-2008-9-s2-s8.
Article
Google Scholar
Leitner F, Mardis SA, Krallinger M, Cesareni G, Hirschman LA, Valencia A: An overview of biocreative ii. 5. Computational Biology and Bioinformatics, IEEE/ACM Transactions. 2010, 7 (3): 385-399.
Article
CAS
Google Scholar
Morgan AA, Lu Z, Wang X, Cohen AM, Fluck J, Ruch P, Divoli A, Fundel K, Leaman R, Hakenberg J, et al: Overview of biocreative ii gene normalization. Genome biology. 2008, 9 (Suppl 2): 3-10.1186/gb-2008-9-s2-s3.
Article
Google Scholar
Nadeau D, Sekine S: A survey of named entity recognition and classification. Lingvisticae Investigationes. 2007, 30 (1): 3-26. 10.1075/li.30.1.03nad.
Article
Google Scholar
Leser U, Hakenberg J: What makes a gene name? named entity recognition in the biomedical literature. Briefings in Bioinformatics. 2005, 6 (4): 357-369. 10.1093/bib/6.4.357.
Article
CAS
Google Scholar
Kim J-D, Ohta T, Tsuruoka Y, Tateisi Y, Collier N: Introduction to the bio-entity recognition task at jnlpba. Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its Applications, Association for Computational Linguistics. 2004, 70-75.
Google Scholar
Krallinger M, Izarzugaza JM, Rodriguez-Penagos C, Valencia A: Extraction of human kinase mutations from literature, databases and genotyping studies. BMC bioinformatics. 2009, 10 (Suppl 8): 1
Article
Google Scholar
Gerner M, Nenadic G, Bergman CM: Linnaeus: a species name identification system for biomedical literature. BMC bioinformatics. 2010, 11 (1): 85-10.1186/1471-2105-11-85.
Article
Google Scholar
Tanabe L, Xie N, Thom LH, Matten W, Wilbur WJ: Genetag: a tagged corpus for gene/protein named entity recognition. BMC bioinformatics. 2005, 6 (Suppl 1): 3-10.1186/1471-2105-6-S1-S3.
Article
Google Scholar
Arighi CN, Wu CH, Cohen KB, Hirschman L, Krallinger M, Valencia A, Lu Z, Wilbur JW, Wiegers TC: BioCreative-IV virtual issue. Database (Oxford). 2014, 2014:
Google Scholar
Martin E, Monge A, Duret JA, Gualandi F, Peitsch MC, Pospisil P: Building an R&D chemical registration system. J Cheminform. 2012, 4 (1): 11-10.1186/1758-2946-4-11.
Article
CAS
Google Scholar
Yeh A, Morgan A, Colosimo M, Hirschman L: BioCreAtIvE task 1A: gene mention finding evaluation. BMC Bioinformatics. 2005, 6 (Suppl 1): 2-10.1186/1471-2105-6-S1-S2.
Article
Google Scholar
He Y, Kayaalp M: A comparison of 13 tokenizers on medline. 2006, Bethesda, MD: The Lister Hill National Center for Biomedical Communications
Google Scholar
Barrett N, Weber-Jahnke J: Building a biomedical tokenizer using the token lattice design pattern and the adapted Viterbi algorithm. BMC Bioinformatics. 2011, 12 (Suppl 3): 1
Article
Google Scholar
Krallinger M, Rabal O, Leitner F, Vazquez M, Salgado D, Lu Z, Leaman R, Lu Y, Ji D, Lowe DM, Sayle RA, Batista-Navarro RT, Rak R, Huber T, Rocktaschel T, Matos S, Campos D, Tang B, Xu H, Munkhdalai T, Ryu KH, Ramanan SV, Nathan S, Zitnik S, Bajec M, Weber L, Irmer M, Akhondi SA, Kors JA, Xu S, An X, Sikdar UK, Ekbal A, Yoshioka M, Dieb TM, Choi M, Verspoor K, Khabsa M, Giles CL, Liu H, Ravikumar KE, Lamurias A, Couto FM, Dai H, Tsai RT, Ata C, Can T, Usie A, Alves R, Segura-Bedmar I, Martinez P, Oryzabal J, Valencia A: The CHEMDNER corpus of chemicals and drugs and its annotation principles. J Cheminform. 2015, 7 (Suppl 1): S2
Article
Google Scholar
Leaman R, Wei CH, Lu Z: tmChem: a high performance approach for chemical named entity recognition and normalization. J Cheminform. 2014, 7 (Suppl 1): S3
Article
Google Scholar
team 173, C. [http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmChem/]
Ata C, Can T: Dbchem: A database query based solution for the chemical compound and drug name recognition task. BioCreative Challenge Evaluation Workshop. 2013, 2: 42
Google Scholar
team 177, C. [http://www.ceng.metu.edu.tr/˜e1347145]
Lowe DM, Sayle R: LeadMine: A grammar and dictionary driven approach to entity recognition. J Cheminform. 2014, 7 (Suppl 1): S5
Article
Google Scholar
team 179, C. [http://nextmovesoftware.com/leadmine.html]
Batista-Navarro R, Rak R, Ananiadou S: Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics. J Cheminform. 2014, 7 (Suppl 1): S6
Article
Google Scholar
Ramanan S, Nathan PS: Adapting cocoa, a multi-class entity detector, for the chemdner task of biocreative iv. BioCreative Challenge Evaluation Workshop. 2013, 2: 60
Google Scholar
team 185, C. [http://relagent.com/Tech.html]
Usie A, Cruz J, Comas J, Solsona F, Alves R: CheNER: A tool for the differential identification of several classes of chemical entities. J Cheminform. 2014, 7 (Suppl 1): S15
Article
Google Scholar
team 191, C. [http://metres.udl.cat]
Tang B, Feng Y, Wang X, Wu Y, Zhang Y, Jiang M, Wang J, Xu H: A Comparison of Conditional Random Fields and Structured Support Vector Machines for Chemical Entity Recognition in Biomedical Literature. J Cheminform. 2014, 7 (Suppl 1): S8
Article
Google Scholar
Lamurias A, Ferreira JD, Couto FM: Improving chemical entity recognition through h-index based semantic similarity. J Cheminform. 2014
Google Scholar
team 196, C. [http://www.lasige.di.fc.ul.pt/webtools/ice/]
Campos D, Matos S, Oliveira JL: A document processing pipeline for annotating chemical entities in scientific documents. J Cheminform. 2014, 7 (Suppl 1): S7
Article
Google Scholar
team 197, C. [http://bioinformatics.ua.pt/becas-chemicals/]
Huber T, Rocktäschel T, Weidlich M, Thomas P, Leser U: Extended feature set for chemical named entity recognition and indexing. BioCreative Challenge Evaluation Workshop. 2013, 2: 88
Google Scholar
team 198, C. [https://www.informatik.hu-berlin.de/forschung/gebiete/wbi/resources/chemspot/chemspot/]
Irmer M, Bobach C, Böhme T, Laube U, Püschel A, Weber L: Chemical named entity recognition with ocminer. BioCreative Challenge Evaluation Workshop. 2013, 2: 92
Google Scholar
team 199, C. [http://www.ocminer.com]
Choi M, Yepes AJ, Zobel J, Verspoor K: Neroc: Named entity recognizer of chemicals. BioCreative Challenge Evaluation Workshop. 2013, 2: 97
CAS
Google Scholar
team 214, C. [http://www.chemaxon.com]
Li L, Guo R, Liu S, Zhang P, Zheng T, Huang D, Zhou H: Combining machine learning with dictionary lookup for chemical compound and drug name recognition task. BioCreative Challenge Evaluation Workshop. 2013, 2: 171
Google Scholar
Khabsa M, Giles CL: Chemical Entity Extraction using CRF and an Ensemble of Extractors. J Cheminform. 2014, 7 (Suppl 1): S12
Article
Google Scholar
team 219, C. [https://github.com/SeerLabs/chemxseer-tagger]
Akhondi SA, Hettne KM, van der Horst E, van Mulligen EM, Kors JA: Recognition of chemical entities: combining dictionary-based and grammar-based approaches. J Cheminform. 2014, 7 (Suppl 1): S10
Article
Google Scholar
Lana-Serrano S, Sanchez-Cisneros D, Campillos L, Segura-Bedmar I: Recognizing chemical compounds and drugs: a rule-based approach using semantic information. BioCreative Challenge Evaluation Workshop. 2013, 2: 121
Google Scholar
team 225, C. [http://labda.inf.uc3m.es/multimedica/CHEMDNER2013team225resources.html]
Lu Y, Yao X, Wei X, Ji D, Liang X: CHEMDNER System with Mixed Conditional Random Fields and Multi-scale Word Clustering. J Cheminform. 2014, 7 (Suppl 1): S4
Article
Google Scholar
team 231, C. [https://github.com/zuiwufenghua/biocreative_CHEMDNER]
Munkhdalai T, Li M, Batsuren K, Park HA, Choi NH, Ryu KH: Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations. J Cheminform. 2014, 7 (Suppl 1): S9
Article
Google Scholar
team 233, C. [https://bitbucket.org/tsendeemts/banner-chemdner]
Ravikumar K, Li D, Jonnalagadda S, Wagholikar KB, Xia N, Liu H: An ensemble approach for chemical entity mention detection and indexing. BioCreative Challenge Evaluation Workshop. 2013, 2: 140
Google Scholar
Zitnik S, Bajec M: Token-and constituent-based linear-chain crf with svm for named entity recognition. BioCreative Challenge Evaluation Workshop. 2013, 2: 144
Google Scholar
Xu S, An X, Zhu L, Zhang Y, Zhang H: A CRF-Based System for Recognizing Chemical Entity Mentions (CEMs) in Biomedical Literature. J Cheminform. 2014, 7 (Suppl 1): S11
Article
Google Scholar
team 259, C. [http://www.sciteminer.org/XuShuo/Demo/CEM]
Sikdar UK, Ekbal A, Saha S: Domain-independent model for chemical compound and drug name recognition. BioCreative Challenge Evaluation Workshop. 2013, 2: 158
Google Scholar
DIEB M: Ensemble approach to extract chemical named entity by using results of multiple cner systems with different characteristic. BioCreative Challenge Evaluation Workshop. 2013, 2: 162
Google Scholar
Shu C-Y, Lai P-T, Wu C-Y, Dai H-J, Tsai RT-H: A chemical compound and drug named recognizer for biocreative iv. BioCreative Challenge Evaluation Workshop. 2013, 2: 168
Google Scholar