Svobodová Vařeková R, Geidl S, Ionescu C-M, Skřehota O, Kudera M, Sehnal D, Bouchal T, Abagyan R, Huber HJ, Koča J (2011) Predicting pKa values of substituted phenols from atomic charges: comparison of different quantum mechanical methods and charge distribution schemes. J Chem Inf Model 51(8):1795–1806

Article
Google Scholar

Svobodová Vařeková R, Geidl S, Ionescu C-M, Skřehota O, Bouchal T, Sehnal D, Abagyan R, Koča J (2013) Predicting pKa values from EEM atomic charges. J Chem Inf 5(1):18

Google Scholar

Geidl S, Svobodová Vařeková R, Bendová V, Petrusek L, Ionescu C-M, Jurka Z, Abagyan R, Koča J (2015) How does the methodology of 3D structure preparation influence the quality of pKa prediction? J Chem Inf Model 55(6):1088–1097

Article
CAS
Google Scholar

Dixon SL, Jurs PC (1993) Estimation of pKa for organic oxyacids using calculated atomic charges. J Comput Chem 14:1460–1467

Article
CAS
Google Scholar

Zhang J, Kleinöder T, Gasteiger J (2006) Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors. J Chem Inf Model 46:2256–2256

Article
CAS
Google Scholar

Gross KC, Seybold PG, Hadad CM (2002) Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols. Int J Quantum Chem 90:445–58

Article
CAS
Google Scholar

Ghafourian T, Dearden JC (2000) The use of atomic charges and orbital energies as hydrogen-bonding-donor parameters for QSAR studies: comparison of MNDO, AM1 and PM3 methods. J Pharm Pharmacol 52(6):603–610

Article
CAS
Google Scholar

Dudek AZ, Arodz T, Gálvez J (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9(3):213–228

Article
CAS
Google Scholar

Karelson M, Lobanov VS, Katritzky AR (1996) Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev 96(3):1027–1044

Article
CAS
Google Scholar

Todeschini R, Consonni V (2008) Handbook of molecular descriptors. Wiley-VCH Verlag GmbH, Weinheim

Google Scholar

Galvez J, Garcia R, Salabert MT, Soler R (1994) Charge indexes. New topological descriptors. J Chem Inf Model 34(3):520–525

Article
CAS
Google Scholar

Stalke D (2011) Meaningful structural descriptors from charge density. Chemistry 17(34):9264–9278

Article
CAS
Google Scholar

Wermuth CG (2006) Pharmacophores: historical perspective and viewpoint from a medicinal chemist. In: Langer T, Hoffmann RD (eds) Pharmacophores and pharmacophore searches, vol 32. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Google Scholar

MacDougall PJ, Henze CE (2007) Fleshing-out pharmacophores with volume rendering of the Laplacian of the charge density and hyperwall visualization technology. In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 499–514

Chapter
Google Scholar

Clement OO, Mehl AT (2000) HipHop: pharmacophores based on multiple common-feature alignments. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 69–84

Google Scholar

Lyne PD (2002) Structure-based virtual screening: an overview. Drug Discov Today 7(20):1047–1055

Article
CAS
Google Scholar

Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43(25):4759–4767

Article
CAS
Google Scholar

Park H, Lee J, Lee S (2006) Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins 65(3):549–554

Article
CAS
Google Scholar

Kearsley SK, Sallamack S, Fluder EM, Andose JD, Mosley RT, Sheridan RP (1996) Chemical similarity using physiochemical property descriptors. J Chem Inf Model 36(1):118–127

Article
CAS
Google Scholar

Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity—a review. QSAR Comb Sci 22(910):1006–1006

Article
Google Scholar

Holliday JD, Jelfs SP, Willett P, Gedeck P (2003) Calculation of intersubstituent similarity using R-group descriptors. J Chem Inf Comput Sci 43(2):406–411

Article
CAS
Google Scholar

Tervo AJ, Rönkkö T, Nyrönen TH, Poso A (2005) BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications. J Med Chem 48(12):4076–4086

Article
CAS
Google Scholar

Vainio MJ, Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47(6):2462–2474

Article
CAS
Google Scholar

Lemmen C, Lengauer T, Klebe G (1998) FLEXS: a method for fast flexible ligand superposition. J Med Chem 41(23):4502–4520

Article
CAS
Google Scholar

Mulliken RS (1955) Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J Chem Phys 23(10):1833

Article
CAS
Google Scholar

Mulliken RS (1955) Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23(10):1841

Article
CAS
Google Scholar

Löwdin P-O (1950) On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J Chem Phys 18(3):365

Article
Google Scholar

Reed AE, Weinhold F (1983) Natural bond orbital analysis of near-Hartree-Fock water dimer. J Chem Phys 78(6):4066–4073

Article
CAS
Google Scholar

Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83(2):735

Article
CAS
Google Scholar

Bader RFW (1985) Atoms in molecules. Acc Chem Res 18(1):9–15

Article
CAS
Google Scholar

Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91(5):893–928

Article
CAS
Google Scholar

Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138

Article
CAS
Google Scholar

Ritchie JP (1985) Electron density distribution analysis for nitromethane, nitromethide, and nitramide. J Am Chem Soc 107(7):1829–1837

Article
CAS
Google Scholar

Ritchie JP, Bachrach SM (1987) Some methods and applications of electron density distribution analysis. J Comput Chem 8(4):499–509

Article
CAS
Google Scholar

Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11(3):361–373

Article
CAS
Google Scholar

Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5(2):129–145

Article
CAS
Google Scholar

Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11(4):431–439

Article
CAS
Google Scholar

Kelly CP, Cramer CJ, Truhlar DG (2005) Accurate partial atomic charges for high-energy molecules using class IV charge models with the MIDI! basis set. Theor Chem Acc 113(3):133–151

Article
CAS
Google Scholar

Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396

Article
CAS
Google Scholar

Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184

Article
Google Scholar

Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36(22):3219–3228

Article
CAS
Google Scholar

Cho K-H, Kang YK, No KT, Scheraga HA (2001) A fast method for calculating geometry-dependent net atomic charges for polypeptides. J Phys Chem B 105(17):3624–3624

Article
CAS
Google Scholar

Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS (2006) Atomic charges via electronegativity equalization: generalizations and perspectives. Adv Quantum Chem 51:139–156

Article
CAS
Google Scholar

Shulga DA, Oliferenko AA, Pisarev SA, Palyulin VA, Zefirov NS (2010) Fast tools for calculation of atomic charges well suited for drug design. SAR QSAR Environ Res 19(1–2):153–165

Google Scholar

Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320

Article
CAS
Google Scholar

Rappe AK, Goddard WA (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95(8):3358–3363

Article
CAS
Google Scholar

Nistor RA, Polihronov JG, Müser MH, Mosey NJ (2006) A generalization of the charge equilibration method for nonmetallic materials. J Chem Phys 125(9):094108

Article
Google Scholar

Mathieu D (2007) Split charge equilibration method with correct dissociation limits. J Chem Phys 127(22):224103

Article
Google Scholar

Svobodová Vařeková R, Jiroušková Z, Vaněk J, Suchomel S, Koča J (2007) Electronegativity equalization method: parameterization and validation for large sets of organic, organohalogene and organometal molecule. Int J Mol Sci 8:572–572

Article
Google Scholar

Janssens GOA, Baekelandt BG, Toufar H, Mortier WJ, Schoonheydt RA (1995) Comparison of cluster and infinite crystal calculations on zeolites with the electronegativity equalization method (EEM). J Phys Chem 99(10):3251–3258

Article
CAS
Google Scholar

Heidler R, Janssens GOA, Mortier WJ, Schoonheydt RA (1996) Charge sensitivity analysis of intrinsic basicity of Faujasite-type zeolites using the electronegativity equalization method (EEM). J Phys Chem 100(50):19728–19734

Article
CAS
Google Scholar

Sorich MJ, McKinnon RA, Miners JO, Winkler DA, Smith PA (2004) Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method. J Med Chem 47(21):5311–5317

Article
CAS
Google Scholar

Bultinck P, Langenaeker W, Carbó-Dorca R, Tollenaere JP (2003) Fast calculation of quantum chemical molecular descriptors from the electronegativity equalization method. J Chem Inf Comput Sci 43(2):422–428

Article
CAS
Google Scholar

Smirnov KS, van de Graaf B (1996) Consistent implementation of the electronegativity equalization method in molecular mechanics and molecular dynamics. J Chem Soc Faraday Trans 92(13):2469

Article
CAS
Google Scholar

Ionescu C-M, Geidl S, Svobodová Vařeková R, Koča J (2013) Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method. J Chem Inf Model 53(10):2548–2548

Article
CAS
Google Scholar

Baekelandt BG, Mortier WJ, Lievens JL, Schoonheydt RA (1991) Probing the reactivity of different sites within a molecule or solid by direct computation of molecular sensitivities via an extension of the electronegativity equalization method. J Am Chem Soc 113(18):6730–6734

Article
CAS
Google Scholar

Jiroušková Z, Vařeková RS, Vaněk J, Koča J (2009) Electronegativity equalization method: parameterization and validation for organic molecules using the Merz-Kollman-Singh charge distribution scheme. J Comput Chem 30(7):1174–1178

Article
Google Scholar

Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Van Alsenoy C, Tollenaere JP (2002) The electronegativity equalization method II: applicability of different atomic charge schemes. J Phys Chem A 106(34):7895–7901

Article
CAS
Google Scholar

Ouyang Y, Ye F, Liang Y (2009) A modified electronegativity equalization method for fast and accurate calculation of atomic charges in large biological molecules. Phys Chem Chem Phys 11(29):6082–6089

Article
CAS
Google Scholar

Bultinck P, Vanholme R, Popelier PLA, De Proft F, Geerlings P (2004) High-speed calculation of AIM charges through the electronegativity equalization method. J Phys Chem A 108(46):10359–10366

Article
CAS
Google Scholar

O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G (2011) Open Babel: an open chemical toolbox. J Chem Inf 3(1):33–47

Google Scholar

Puranen JS, Vainio MJ, Johnson MS (2010) Accurate conformation-dependent molecular electrostatic potentials for high-throughput in silico drug discovery. J Comput Chem 31(8):1722–1732

CAS
Google Scholar

Svobodová Vařeková R, Koča J (2006) Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method. J Comput Chem 3:396–405

Google Scholar

Bultinck P, Carbó-Dorca R, Langenaeker W (2003) Negative Fukui functions: new insights based on electronegativity equalization. J Chem Phys 118(10):4349

Article
CAS
Google Scholar

Burden FR, Polley MJ, Winkler DA (2009) Toward novel universal descriptors: charge fingerprints. J Chem Inf Model 49(3):710–715

Article
CAS
Google Scholar

Open NCI Database (2012) Release 4. http://cactus.nci.nih.gov/download/nci/

Sadowski J, Gasteiger J (1993) From atoms and bonds to three-dimensional atomic coordinates: automatic model builders. Chem Rev 93:2567–2581

Article
CAS
Google Scholar

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. Gaussian 09, Revision E.01. http://www.gaussian.com

Todd A Keith (2015) AIMAll 15.05.18. http://aim.tkgristmill.com

Raček T, Svobodová Vařeková R, Křenek A, Koča J NEEMP—tool for parameterization of empirical charge calculation method EEM. http://ncbr.muni.cz/neemp/

Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, Gautam B, Hassanali M(2008) DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 36(Database issue):901–906

Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han B, Zhou Y, Wishart DS (2004) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(Database issue):1091–1097

Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(Database issue):1083–1090

Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) PubChem: integrated platform of small molecules and biological activities. In: Wheeler R, Spellmeyer D (eds) Annual Reports in Computational Chemistry, vol. 4, Chap 12. Elsevier, Oxford

Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

Article
CAS
Google Scholar

R Core Team R: A Language and Environment for Statistical Computing. http://www.r-project.org/

Ionescu CM, Sehnal D, Falginella FL, Pant P, Pravda L, Bouchal T, Svobodová Vařeková R, Geidl S, Koča J (2015) AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminf 7(1):50