Cherkasov A, Muratov EN, Fourches D et al (2014) QSAR modeling: where have you been? Where are you going to? J Med Chem 57:4977–5010. https://doi.org/10.1021/jm4004285
Article
CAS
PubMed
PubMed Central
Google Scholar
Mater AC, Coote ML (2019) Deep Learning in Chemistry. J Chem Inf Model 59:2545–2559. https://doi.org/10.1021/acs.jcim.9b00266
Article
CAS
PubMed
Google Scholar
Tropsha A (2010) Best practices for QSAR model development, validation, and exploitation. Mol Inform 29:476–488. https://doi.org/10.1002/minf.201000061
Article
CAS
PubMed
Google Scholar
Ma J, Sheridan RP, Liaw A et al (2015) Deep neural nets as a method for quantitative structure-activity relationships. J Chem Inf Model 55:263–274. https://doi.org/10.1021/ci500747n
Article
CAS
PubMed
Google Scholar
Fourches D, Williams AJ, Patlewicz G, et al (2018) Computational Tools for ADMET Profiling. In: Computational Toxicology. pp 211–244
Li X, Kleinstreuer NC, Fourches D (2020) Hierarchical quantitative structure-activity relationship modeling approach for integrating binary, multiclass, and regression models of acute oral systemic toxicity. Chem Res Toxicol 33:353–366. https://doi.org/10.1021/acs.chemrestox.9b00259
Article
CAS
PubMed
Google Scholar
Ash J, Fourches D (2017) Characterizing the chemical space of ERK2 kinase inhibitors using descriptors computed from molecular dynamics trajectories. J Chem Inf Model 57:1286–1299. https://doi.org/10.1021/acs.jcim.7b00048
Article
CAS
PubMed
Google Scholar
Fourches D, Ash J (2019) 4D- quantitative structure–activity relationship modeling: making a comeback. Expert Opin Drug Discov. https://doi.org/10.1080/17460441.2019.1664467
Article
PubMed
Google Scholar
Xue L, Bajorath J (2012) Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Comb Chem High Throughput Screen 3:363–372. https://doi.org/10.2174/1386207003331454
Article
Google Scholar
Gilmer J, Schoenholz SS, Riley PF, et al (2017) Neural message passing for quantum chemistry. http://arxiv.org/abs/1704.01212
Chen C, Ye W, Zuo Y et al (2019) Graph networks as a universal machine learning framework for molecules and crystals. Chem Mater 31:3564–3572. https://doi.org/10.1021/acs.chemmater.9b01294
Article
CAS
Google Scholar
Yang K, Swanson K, Jin W et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59:3370–3388. https://doi.org/10.1021/acs.jcim.9b00237
Article
CAS
PubMed
PubMed Central
Google Scholar
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J et al (2015) Convolutional networks on graphs for learning molecular fingerprints. Adv Neural Inf Process Syst 2015:2224–2232
Google Scholar
Coley CW, Barzilay R, Green WH et al (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57:1757–1772. https://doi.org/10.1021/acs.jcim.6b00601
Article
CAS
PubMed
Google Scholar
Wu Z, Ramsundar B, Feinberg EN et al (2018) MoleculeNet: a benchmark for molecular machine learning. Chem Sci 9:513–530. https://doi.org/10.1039/C7SC02664A
Article
CAS
PubMed
Google Scholar
Pham T, Tran T, Venkatesh S (2018) Graph memory networks for molecular activity prediction. In: Proceedings - international conference on pattern recognition. pp 639–644
Wang X, Li Z, Jiang M et al (2019) Molecule property prediction based on spatial graph embedding. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.9b00410
Article
PubMed
PubMed Central
Google Scholar
Feinberg EN, Sur D, Wu Z et al (2018) PotentialNet for molecular property prediction. ACS Cent Sci 4:1520–1530. https://doi.org/10.1021/acscentsci.8b00507
Article
CAS
PubMed
PubMed Central
Google Scholar
Stokes JM, Yang K, Swanson K et al (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021
Article
PubMed
Google Scholar
Tang B, Kramer ST, Fang M et al (2020) A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility. J Cheminform 12:15. https://doi.org/10.1186/s13321-020-0414-z
Article
PubMed Central
Google Scholar
Withnall M, Lindelöf E, Engkvist O, Chen H (2020) Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction. J Cheminform 12:1–18. https://doi.org/10.1186/s13321-019-0407-y
Article
PubMed Central
Google Scholar
Goh GB, Hodas NO, Siegel C, Vishnu A (2017) SMILES2Vec: An interpretable general-purpose deep neural network for predicting chemical properties. http://arxiv.org/abs/1712.02034
Zheng S, Yan X, Yang Y, Xu J (2019) Identifying structure-property relationships through SMILES syntax analysis with self-attention mechanism. J Chem Inf Model 59:914–923. https://doi.org/10.1021/acs.jcim.8b00803
Article
CAS
PubMed
Google Scholar
Kimber TB, Engelke S, Tetko I V, et al (2018) Synergy effect between convolutional neural networks and the multiplicity of SMILES for improvement of molecular prediction. http://arxiv.org/abs/1812.04439
Goh GB, Siegel C, Vishnu A, et al (2017) Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. https://arxiv.org/pdf/1706.06689.pdf
Goh GB, Siegel C, Vishnu A, Hodas NO (2017) Using rule-based labels for weak supervised learning: a ChemNet for transferable chemical property prediction.
Paul A, Jha D, Al-Bahrani R, et al (2018) CheMixNet: Mixed DNN architectures for predicting chemical properties using multiple molecular representations. http://arxiv.org/abs/1811.08283
Goh GB, Siegel C, Vishnu A, et al (2018) How much chemistry does a deep neural network need to know to make accurate predictions? In: Proceedings - 2018 IEEE winter conference on applications of computer vision, WACV 2018. pp 1340–1349
Fernandez M, Ban F, Woo G et al (2018) Toxic colors: the use of deep learning for predicting toxicity of compounds merely from their graphic images. J Chem Inf Model 58:1533–1543. https://doi.org/10.1021/acs.jcim.8b00338
Article
CAS
PubMed
Google Scholar
Asilar E, Hemmerich J, Ecker GF (2020) Image based liver toxicity prediction. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.9b00713
Article
PubMed
Google Scholar
Varnek A, Fourches D, Hoonakker F, Solov’ev VP (2005) Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J Comput Aided Mol Des 19:693–703. https://doi.org/10.1007/s10822-005-9008-0
Article
CAS
PubMed
Google Scholar
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31–36. https://doi.org/10.1021/ci00057a005
Article
CAS
Google Scholar
Weininger D, Weininger A, Weininger JL (1989) SMILES. 2. Algorithm for generation of unique SMILES notation. J Chem Inf Model 29:97–101. https://doi.org/10.1021/ci00062a008
Article
CAS
Google Scholar
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558. https://doi.org/10.1073/pnas.79.8.2554
Article
CAS
PubMed
Google Scholar
Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence learning. http://arxiv.org/abs/1506.00019
Kim Y Convolutional neural networks for sentence classification. http://arxiv.org/abs/1408.5882
Vaswani A, Shazeer N, Parmar N, et al (2017) Attention Is All You Need. http://arxiv.org/abs/1706.03762
Deng J, Dong W, Socher R, et al (2009) ImageNet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 248–255
Canziani A, Paszke A, Culurciello E (2016) An analysis of deep neural network models for practical applications. http://arxiv.org/abs/1605.07678
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. http://arxiv.org/abs/1301.3781
Pennington J, Socher R, Manning CD (2014) GloVe: Global vectors for word representation. In: Empirical methods in natural language processing (EMNLP). pp 1532–1543
Joulin A, Grave E, Bojanowski P, et al (2016) FastText.zip: Compressing text classification models. http://arxiv.org/abs/1612.03651
Peters ME, Neumann M, Iyyer M, et al (2018) Deep contextualized word representations. http://allennlp.org/elmo
Devlin J, Chang M-W, Lee K, Toutanova K (2018) BERT: Pre-training of deep bidirectional transformers for language understanding. http://arxiv.org/abs/1810.04805
Howard J, Ruder S (2018) Universal language model fine-tuning for text classification. http://arxiv.org/abs/1801.06146
Yang Z, Dai Z, Yang Y, et al (2019) XLNet: Generalized autoregressive pretraining for language understanding. http://arxiv.org/abs/1906.08237
Liu Y, Ott M, Goyal N, et al (2019) RoBERTa: A robustly optimized BERT pretraining approach. http://arxiv.org/abs/1907.11692
Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:1100–1107. https://doi.org/10.1093/nar/gkr777
Article
CAS
Google Scholar
Jaeger S, Fulle S, Turk S (2018) Mol2vec: unsupervised Machine Learning Approach with Chemical Intuition. J Chem Inf Model 58:27–35. https://doi.org/10.1021/acs.jcim.7b00616
Article
CAS
PubMed
Google Scholar
Hu W, Liu B, Gomes J, et al (2019) Pre-training Graph Neural Networks. https://arxiv.org/pdf/1905.12265.pdf
Xu Y, Ma J, Liaw A et al (2017) Demystifying multitask deep neural networks for quantitative structure-activity relationships. J Chem Inf Model 57:2490–2504. https://doi.org/10.1021/acs.jcim.7b00087
Article
CAS
PubMed
Google Scholar
Sosnin S, Karlov D, Tetko IV, Fedorov MV (2019) Comparative study of multitask toxicity modeling on a broad chemical space. J Chem Inf Model 59:1062–1072. https://doi.org/10.1021/acs.jcim.8b00685
Article
CAS
PubMed
Google Scholar
León A, Chen B, Gillet VJ (2018) Effect of missing data on multitask prediction methods. J Cheminform 10:26. https://doi.org/10.1186/s13321-018-0281-z
Article
CAS
Google Scholar
Wu K, Wei G-W (2018) Quantitative toxicity prediction using topology based multitask deep neural networks. J Chem Inf Model 58:520–531. https://doi.org/10.1021/acs.jcim.7b00558
Article
CAS
PubMed
Google Scholar
Varnek A, Gaudin C, Marcou G et al (2009) Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients. J Chem Inf Model 49:133–144. https://doi.org/10.1021/ci8002914
Article
CAS
PubMed
Google Scholar
Ramsundar B, Liu B, Wu Z et al (2017) Is multitask deep learning practical for pharma? J Chem Inf Model 57:2068–2076. https://doi.org/10.1021/acs.jcim.7b00146
Article
CAS
PubMed
Google Scholar
Merity S, Xiong C, Bradbury J, Socher R (2016) Pointer sentinel mixture models. http://arxiv.org/abs/1609.07843
Linzen T, Dupoux E, Goldberg Y (2016) Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. http://arxiv.org/abs/1611.01368
Gulordava K, Bojanowski P, Grave E, et al (2018) Colorless green recurrent networks dream hierarchically. http://arxiv.org/abs/1803.11138
Radford A, Jozefowicz R, Sutskever I (2017) Learning to generate reviews and discovering sentiment. http://arxiv.org/abs/1704.01444
Merity S, Keskar NS, Socher R (2017) Regularizing and optimizing LSTM language models. http://arxiv.org/abs/1708.02182
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Article
CAS
PubMed
Google Scholar
Smith LN (2018) A disciplined approach to neural network hyper-parameters: Part 1: learning rate, batch size, momentum, and weight decay. http://arxiv.org/abs/1803.09820
Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? In: Advances in neural information processing systems. pp 3320–3328
Adam P, Sam G, et al (2017) Automatic differentiation in PyTorch. In: 31st Conf Neural Inf Process Syst (NIPS 2017)
Howard J, Gugger S (2020) Fastai: a layered API for deep learning. Information 11:108. https://doi.org/10.3390/info11020108
Article
Google Scholar
Swain M MolVS: Molecule validation and standardization. https://github.com/mcs07/MolVS
Landrum G RDKit: Open-source cheminformatics. http://www.rdkit.org
Fadaee M, Bisazza A, Monz C (2017) Data augmentation for low-resource neural machine translation. http://arxiv.org/abs/1705.00440
Kobayashi S (2018) Contextual Augmentation: Data Augmentation by Words with Paradigmatic Relations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Association for Computational Linguistics, Stroudsburg, PA, USA, pp 452–457
Kafle K, Yousefhussien M, Kanan C (2017) Data Augmentation for Visual Question Answering. In: Proceedings of the 10th international conference on natural language generation. association for computational linguistics, Stroudsburg, PA, USA, pp 198–202
Lei C, Hu B, Wang D, et al (2019) A preliminary study on data augmentation of deep learning for image classification. In: ACM International Conference Proceeding Series
Bjerrum EJ (2017) SMILES enumeration as data augmentation for neural network modeling of molecules. http://arxiv.org/abs/1703.07076
Arús-Pous J, Blaschke T, Ulander S et al (2019) Exploring the GDB-13 chemical space using deep generative models. J Cheminform 11:20. https://doi.org/10.1186/s13321-019-0341-z
Article
PubMed
PubMed Central
Google Scholar
Arús-Pous J, Johansson SV, Prykhodko O et al (2019) Randomized SMILES strings improve the quality of molecular generative models. J Cheminform 11:71. https://doi.org/10.1186/s13321-019-0393-0
Article
PubMed Central
Google Scholar
Cortes-Ciriano I, Bender A (2015) Improved chemical structure-activity modeling through data augmentation. J Chem Inf Model 55:2682–2692. https://doi.org/10.1021/acs.jcim.5b00570
Article
CAS
PubMed
Google Scholar
Sheridan RP (2013) Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model 53:783–790. https://doi.org/10.1021/ci400084k
Article
CAS
PubMed
Google Scholar