Yan XC, Sanders JM, Gao Y-D, Tudor M, Haidle AM, Klein DJ et al (2020) Augmenting hit identification by virtual screening techniques in small molecule drug discovery. J Chem Inf Model. https://doi.org/10.1021/acs.jcim.0c00113
Article
PubMed
PubMed Central
Google Scholar
Walters WP, Patrick WW (2019) Virtual chemical libraries. J Med Chem. https://doi.org/10.1021/acs.jmedchem.8b01048
Article
PubMed
Google Scholar
Ruddigkeit L, van Deursen R, Blum LC, Reymond J-L (2012) Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J Chem Inf Model 52:2864–2875
Article
CAS
PubMed
Google Scholar
Humbeck L, Weigang S, Schäfer T, Mutzel P, Koch O (2018) CHIPMUNK: A virtual synthesizable small-molecule library for medicinal chemistry, exploitable for protein-protein interaction modulators. ChemMedChem 13:532–539
Article
CAS
PubMed
Google Scholar
Lessel U, Wellenzohn B, Lilienthal M, Claussen H (2009) Searching fragment spaces with feature trees. J Chem Inf Model 49:270–279
Article
CAS
PubMed
Google Scholar
Nicolaou CA, Watson IA, Hu H, Wang J (2016) The Proximal Lilly Collection: mapping, exploring and exploiting feasible chemical space. J Chem Inf Model 56:1253–1266
Article
CAS
PubMed
Google Scholar
Hu Q, Peng Z, Sutton SC, Na J, Kostrowicki J, Yang B et al (2012) Pfizer Global Virtual Library (PGVL): a chemistry design tool powered by experimentally validated parallel synthesis information. ACS Comb Sci 14:579–589
Article
CAS
PubMed
Google Scholar
Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS et al (2019) Ultra-large library docking for discovering new chemotypes. Nature 566:224–229
Article
CAS
PubMed Central
PubMed
Google Scholar
REAL Database - Enamine. https://enamine.net/library-synthesis/real-compounds/real-database. Accessed 4 Sept 2020.
Karthikeyan M, Vyas R (2014) Chemoinformatics approach for the design and screening of focused virtual libraries. In: Karthikeyan M, Vyas R (eds) Practical Chemoinformatics. Springer India, New Delhi, pp 93–131
Chapter
Google Scholar
Saldívar-González FI, Medina-Franco JL (2020) Chemoinformatics approaches to assess chemical diversity and complexity of small molecules. In: Trabocchi A, Lenci E (eds) Small Molecule Drug Discovery. Elsevier, Florence, pp 83–102
Chapter
Google Scholar
Medina-Franco JL, Martinez-Mayorga K, Meurice N (2014) Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 9:151–165
Article
CAS
PubMed
Google Scholar
Pitt WR, Kroeplien B (2013) Exploring virtual scaffold spaces. In: Brown N (ed) Methods and Principles in Medicinal Chemistry. Wiley, London, pp 83–104
Google Scholar
Chemical Computing Group (CCG) | Computer-Aided Molecular Design. https://www.chemcomp.com/. Accessed 4 Sept 2020.
Schrödinger. https://www.schrodinger.com/. Accessed 4 Sept 2020.
Library synthesizer – Tripod Development. https://tripod.nih.gov/?p=370. Accessed 4 Sept 2020.
Optibrium. https://www.optibrium.com/stardrop/stardrop-nova.php. Accessed 4 Sept 2020.
Reactor | ChemAxon. https://chemaxon.com/products/reactor. Accessed 4 Sept 2020.
Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model 55:460–473
Article
CAS
PubMed
Google Scholar
KNIME. https://www.knime.com/. Accessed 4 Sept 2020.
D-Peptide Builder. https://132.248.103.152:4000/. Accessed 4 Sept 2020.
Díaz-Eufracio BI, Palomino-Hernández O, Arredondo-Sánchez A, Medina-Franco JL (2020) D-Peptide Builder: a web service to enumerate, analyze, and visualize the chemical space of combinatorial peptide libraries. Mol Inform. https://doi.org/10.1002/minf.202000035
Article
PubMed
Google Scholar
Landrum G. RDKit. 2020. https://www.rdkit.org/. Accessed 4 Sept 2020.
Chemical Library Enumeration | KNIME. https://www.knime.com/knime-applications/chemical-library-enumeration. Accessed 4 Sept 2020.
Schüller A, Hähnke V, Schneider G. SmiLib v2.0: A Java-Based tool for rapid combinatorial library enumeration. QSAR Comb Sci. 2007; doi:https://doi.org/10.1002/qsar.200630101.
GLARE. https://glare.sourceforge.net/. Accessed 4 Sept 2020.
Guha R, Willighagen E (2020) Learning cheminformatics. J Cheminformatics. https://doi.org/10.1186/s13321-019-0406-z
Article
Google Scholar
Engel T (2003) Representation of chemical compounds. In: Gasteiger J, Engel T (eds) Chemoinformatics. Wiley-VCH, Weinheim, pp 15–168
Chapter
Google Scholar
Marvin | ChemAxon. https://chemaxon.com/products/marvin. Accessed 4 Sept 2020.
Structure drawing software for academic and personal use. https://www.acdlabs.com/resources/freeware/chemsketch/. Accessed 4 Sept 2020.
ChemDraw. https://www.perkinelmer.com/es/category/chemdraw. Accessed 4 Sept 2020.
Karthikeyan M, Vyas R (2014) Open-source tools, techniques, and data in chemoinformatics. In: Karthikeyan M, Vyas R (eds) Practical Chemoinformatics. Springer India, New Delhi, pp 1–92
Chapter
Google Scholar
Engel T (2018) Principles of molecular representations. Chemoinformatics. https://doi.org/10.1002/9783527816880.ch2
Article
Google Scholar
Misra M, Faulon J-L (2010) Algorithms to store and retrieve two-dimensional (2D) chemical structures. In: Faulon J-L, Bender A (eds) Handbook of Chemoinformatics Algorithms. Chapman and Hall/CRC, London, pp 49–76
Google Scholar
Schomburg K, Ehrlich H-C, Stierand K, Rarey M (2011) Chemical pattern visualization in 2D – the SMARTSviewer. J Cheminformatics. https://doi.org/10.1186/1758-2946-3-s1-o12
Article
Google Scholar
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci. 28:31–36
Article
CAS
Google Scholar
Weininger D, Weininger A, Weininger JL (1989) SMILES 2 Algorithm for generation of unique SMILES notation. J Chem Inf Comput Sci. 29(2):97–101
Article
CAS
Google Scholar
Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC International Chemical Identifier. J Cheminformatics 30(7):23
Article
CAS
Google Scholar
Inc D. Daylight Theory: SMARTS-A Language for describing molecular patterns. 2018. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 4 Sept 2020.
Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV (2012) ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Model 52(8):2310–2316
Article
CAS
PubMed Central
PubMed
Google Scholar
Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740
Article
CAS
PubMed
Google Scholar
Bietz S, Schomburg KT, Hilbig M, Rarey M (2015) Discriminative chemical patterns: automatic and interactive design. J Chem Inf Model 55:1535–1546
Article
CAS
PubMed
Google Scholar
Daylight>SMARTS Examples. https://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html. Accessed 4 Sept 2020.
Bienfait B, Ertl P (2013) JSME: a free molecule editor in JavaScript. J Cheminformatics 5:24
Article
CAS
Google Scholar
Ihlenfeldt WD, Bolton EE, Bryant SH (2009) The PubChem chemical structure sketcher. J Cheminformatics 1:20
Article
CAS
Google Scholar
PubChem Sketcher. https://pubchem.ncbi.nlm.nih.gov/edit3/index.html. Accessed 4 Sept 2020.
de Sousa JMA (2017) Processing of SMILES, InChI, and Hashed Fingerprints. In: Varnek A (ed) Tutorials in chemoinformatics. Wiley, Chichester, pp 75–81
Chapter
Google Scholar
Chen L, Nourse JG, Christie BD, Leland BA, Grier DL (2002) Over 20 years of reaction access systems from MDL: a novel reaction substructure search algorithm. J Chem Inf Comp Sci. https://doi.org/10.1021/ci020023s
Article
Google Scholar
Warr WA (2014) A short review of chemical reaction database systems, computer-aided synthesis design, reaction prediction and synthetic feasibility. Mol Inform. https://doi.org/10.1002/minf.201400052
Article
PubMed
Google Scholar
Daylight. https://www.daylight.com/. Accessed 4 Sept 2020.
O’Donnell T. Reactions and transformations. In: Design and use of relational databases in chemistry. Boca Raton: CRC Press; 2008. p. 99–107.
Grethe G, Blanke G, Kraut H, Goodman JM (2018) International Chemical Identifier for Reactions (RInChI). J Cheminformatics 10:22
Article
CAS
Google Scholar
Inc D. Daylight Theory: SMIRKS-A reaction transform language. 2018. https://www.ics.uci.edu/~dock/manuals/DaylightTheoryManual/theory.smirks.html. Accessed 4 Sept 2020.
Daylight>SMIRKS tutorial. https://www.daylight.com/dayhtml_tutorials/languages/smirks/index.html. Accessed 8 May 2020.
Papadakis E, Anantpinijwatna A, Woodley J, Gani R (2017) A reaction database for small molecule pharmaceutical processes integrated with process information. Processes. https://doi.org/10.3390/pr5040058
Article
Google Scholar
Zass E (2008) Databases of chemical reactions. In: Gasteiger J (ed) Handbook of Chemoinformatics. Wiley-VCH, Weinheim, pp 667–699
Chapter
Google Scholar
Blake JE, Dana RC (1990) CASREACT: more than a million reactions. J Chem Inf Comp Sci 30:394–399
Article
CAS
Google Scholar
Reactions - CASREACT - Answers to your chemical reaction questions. https://www.cas.org/content/reactions. Accessed 4 Sept 2020.
Blower PE, Myatt GJ, Petras MW (1997) Exploring functional group transformations on CASREACT. J Chem Inf Comp Sci 37:54–58
Article
CAS
Google Scholar
Reaxys. https://www.reaxys.com/. Accessed 4 Sept 2020.
Computer GJ, Review S (2009) Reaxys. J Chem Inf Model 49:2897–2898
Article
CAS
Google Scholar
Open Molecules. https://www.openmolecules.org/webreactions/intro.html. Accessed 4 Sept 2020.
Stanley TH (2005) Fentanyl. J Pain Symptom Manage 29(Suppl):S67–S71
Article
CAS
PubMed
Google Scholar
Suh YG, Cho KH, Shin DY (1998) Total synthesis of fentanyl. Arch Pharm Res 21:70–72
Article
CAS
PubMed
Google Scholar
Huc I, Lehn J-M (1997) Virtual combinatorial libraries: Dynamic generation of molecular and supramolecular diversity by self-assembly. P Natl Acad Sci. https://doi.org/10.1073/pnas.94.6.2106
Article
Google Scholar
Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4(8):649–663
Article
CAS
PubMed
Google Scholar
Green DVS. Virtual screening of virtual libraries. In: King FD, Oxford AW, editors. Progress in Medicinal Chemistry. Elsevier. 2003. p. 61–97.
Weber L (2005) Current status of virtual combinatorial library design. QSAR Comb Sci 24:809–823
Article
CAS
Google Scholar
Aronov AM (2002) Design of virtual combinatorial libraries. In: English LB (ed) Combinatorial Library. Humana Press, Totowa, pp 267–276
Chapter
Google Scholar
Goldberg FW, Kettle JG, Kogej T, Perry MWD, Tomkinson NP (2015) Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov Today 20:11–17
Article
PubMed
Google Scholar
Congreve M, Carr R, Murray C, Jhoti H (2003) A “rule of three” for fragment-based lead discovery? Drug Discov Today. https://doi.org/10.1016/s1359-6446(03)02831-9
Article
PubMed
Google Scholar
Sterling T, Irwin JJ (2015) ZINC 15–Ligand Discovery for Everyone. J Chem Inf Model 55:2324–2337
Article
CAS
PubMed Central
PubMed
Google Scholar
Asinex.com – Asinex Focused Libraries, Screening compounds, Pre-plated Sets. https://www.asinex.com/. Accessed 4 Sept 2020.
Advanced Chemical Building Blocks | Novel scaffolds | Life Chemicals. https://lifechemicals.com/building-blocks. Accessed 4 Sept 2020.
Maybridge. https://www.maybridge.com. Accessed 4 Sept 2020.
Gomtsyan A (2012) Heterocycles in drugs and drug discovery. Chem Heterocycl Compd. https://doi.org/10.1007/s10593-012-0960-z
Article
Google Scholar
Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137
Article
CAS
PubMed
Google Scholar
Rostovtsev VV, Green LG, Fokin VV (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599
Article
CAS
Google Scholar
Shafi S, Alam MM, Mulakayala N, Mulakayala C, Vanaja G, Kalle AM et al (2012) Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: their anti-inflammatory and anti-nociceptive activities. Eur J Med Chem 49:324–333
Article
CAS
PubMed
Google Scholar
ZINC Sigma Aldrich (Building Blocks). https://zinc.docking.org/catalogs/sialbb/. Accessed: 9 Jun 2020.
Kuhn D, Coates C, Daniel K, Chen D, Bhuiyan M, Kazi A et al (2004) Beta-lactams and their potential use as novel anticancer chemotherapeutics drugs. Front Biosci 9:2605–2617
Article
PubMed
Google Scholar
Malebari AM, Fayne D, Nathwani SM, O’Connell F, Noorani S, Twamley B et al (2020) β-Lactams with antiproliferative and antiapoptotic activity in breast and chemoresistant colon cancer cells. Eur J Med Chem 189:112050
Article
CAS
PubMed
Google Scholar
Goel RK, Mahajan MP, Kulkarni SK (2004) Evaluation of anti-hyperglycemic activity of some novel monocyclic beta lactams. J Pharm Pharm Sci 7:80–83
CAS
PubMed
Google Scholar
Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D et al (2009) Beta-lactams and beta-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit Rev Microbiol 35:81–108
Article
CAS
PubMed
Google Scholar
Velthuisen EJ, Johns BA, Temelkoff DP, Brown KW, Danehower SC (2016) The design of 8-hydroxyquinoline tetracyclic lactams as HIV-1 integrase strand transfer inhibitors. Eur J Med Chem 117:99–112
Article
CAS
PubMed
Google Scholar
De Marco R, Bedini A, Spampinato S, Comellini L, Zhao J, Artali R et al (2018) Constraining endomorphin-1 by β, α-hybrid dipeptide/heterocycle scaffolds: identification of a novel κ-opioid receptor selective partial agonist. J Med Chem 61:5751–5757
Article
CAS
PubMed
Google Scholar
Rawls SM, Robinson W, Patel S, Baron A (2008) Beta-lactam antibiotic prevents tolerance to the hypothermic effect of a kappa opioid receptor agonist. Neuropharmacology 55:865–870
Article
CAS
PubMed
Google Scholar
Baiula M, Galletti P, Martelli G, Soldati R, Belvisi L, Civera M et al (2016) New β-lactam derivatives modulate cell adhesion and signaling mediated by RGD-binding and leukocyte integrins. J Med Chem 59:9721–9742
Article
CAS
PubMed
Google Scholar
Xing B, Rao J, Liu R (2008) Novel beta-lactam antibiotics derivatives: their new applications as gene reporters, antitumor prodrugs and enzyme inhibitors. Mini Rev Med Chem 8:455–471
Article
CAS
PubMed
Google Scholar
Saturnino C, Fusco B, Saturnino P, De Martino G, Rocco F, Lancelot JC (2000) Evaluation of analgesic and anti-inflammatory activity of novel beta-lactam monocyclic compounds. Biol Pharm Bull 23:654–656
Article
CAS
PubMed
Google Scholar
Wei J, Pan X, Pei Z, Wang W, Qiu W, Shi Z et al (2012) The beta-lactam antibiotic, ceftriaxone, provides neuroprotective potential via anti-excitotoxicity and anti-inflammation response in a rat model of traumatic brain injury. J Trauma Acute Care Surg 73:654–660
Article
CAS
PubMed
Google Scholar
Volchegorskii IA, Trenina EA (2006) Antidepressant activity of beta-lactam antibiotics and their effects on the severity of serotonin edema. Bull Exp Biol Med 142:73–75
Article
CAS
PubMed
Google Scholar
Uchida T, Rodriquez M, Schreiber SL (2009) Skeletally Diverse Small Molecules Using a Build/Couple/Pair Strategy. Org Lett. https://doi.org/10.1021/ol900173t
Article
PubMed Central
PubMed
Google Scholar
Saldívar-González FI, Lenci E, Calugi L, Medina-Franco JL, Trabocchi A (2020) Computational-aided design of a library of lactams through a Diversity-Oriented Synthesis strategy. Bioorg Med Chem. https://doi.org/10.1016/j.bmc.2020.115539
Article
PubMed
Google Scholar
Denis. Building Blocks - Enamine n.d. https://enamine.net/building-blocks. Accessed 20 April 2019.
Panza F, Lozupone M, Logroscino G, Imbimbo BP (2019) A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 15:73–88
Article
PubMed
Google Scholar
Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9:101–124
Article
CAS
PubMed
Google Scholar
Rayatzadeh A, Saeedi M, Mahdavi M, Rezaei Z, Sabourian R, Mosslemin MH et al (2015) Synthesis and evaluation of novel oxoisoindoline derivatives as acetylcholinesterase inhibitors. Monatshefte für Chemie - Chemical Monthly 146:637–643
Article
CAS
Google Scholar
Bentley KW (2006) beta-Phenylethylamines and the isoquinoline alkaloids. Nat Prod Rep 23(3):444–463
Article
CAS
PubMed
Google Scholar
ZINC Synquest Building Blocks Economical. https://zinc.docking.org/catalogs/synquestbbe/. Accessed 4 Sept 2020.
ZINC. https://zinc.docking.org/. Accessed 4 Sept 2020.
Lipinski C, Hopkins A (2004) Navigating chemical space for biology and medicine. Nature 432:855–861
Article
CAS
PubMed
Google Scholar
Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1:337–341
Article
CAS
PubMed
Google Scholar
Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623
Article
CAS
PubMed
Google Scholar
Schuffenhauer A, Varin T (2011) Rule-based classification of chemical structures by scaffold. Mol Inform 30:646–664
Article
CAS
PubMed
Google Scholar
Medina-Franco J, Martínez-Mayorga K, Bender A, Scior T (2009) Scaffold diversity analysis of compound data sets using an entropy-based measure. QSAR Comb Sci. 28:1551–1560
Article
CAS
Google Scholar
Langdon SR, Westwood IM, van Montfort RLM, Brown N, Blagg J (2013) Scaffold-focused virtual screening: prospective application to the discovery of TTK inhibitors. J Chem Inf Model 53:110012
Article
CAS
Google Scholar
Wetzel S, Klein K, Renner S, Rauh D, Oprea TI, Mutzel P et al (2009) Interactive exploration of chemical space with Scaffold Hunter. Nat Chem Biol 5:581–583
Article
CAS
PubMed
Google Scholar
Agrafiotis DK, Wiener JJM (2010) Scaffold explorer: an interactive tool for organizing and mining structure−activity data spanning multiple chemotypes. J Med Chem. https://doi.org/10.1021/jm1004495
Article
PubMed
Google Scholar
Mok NY, Brown N (2017) Applications of systematic molecular scaffold enumeration to enrich structure–activity relationship information. J Chem Inf Model 57:27–35
Article
CAS
PubMed
Google Scholar
Medina-Franco JL, Maggiora GM (2013) Molecular similarity analysis. In: Bajorath J (ed) Chemoinformatics for drug discovery. Wiley, Hoboken, pp 343–399
Chapter
Google Scholar
Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity– a Review. QSAR Comb Sci 22:1006–1026
Article
CAS
Google Scholar
Medina-Franco JL (2013) Chemoinformatic characterization of the chemical space and molecular diversity of compound libraries. In: Trabocchi A (ed) Diversity-Oriented Synthesis. Wiley, Hoboken, pp 325–352
Chapter
Google Scholar
González-Medina M, Medina-Franco JL (2017) Platform for unified molecular analysis: PUMA. J Chem Inf Model 57:1735–1740
Article
CAS
PubMed
Google Scholar
Naveja JJ, Saldívar-González FI, Sánchez-Cruz N, Medina-Franco JL (2019) Cheminformatics approaches to study drug polypharmacology. In: Roy K (ed) Multi-target drug design using chem-bioinformatic approaches. Springer, New York, pp 3–25
Google Scholar
González-Medina M, Prieto-Martínez FD, Owen JR, Medina-Franco JL (2016) Consensus diversity plots: a global diversity analysis of chemical libraries. J Cheminformatics 8:63
Article
Google Scholar
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 46:D1074–D1082
Article
CAS
PubMed
Google Scholar
Akella LB, DeCaprio D (2010) Cheminformatics approaches to analyze diversity in compound screening libraries. Curr Opin Chem Biol 14:325–330
Article
CAS
PubMed
Google Scholar
Meyers J, Carter M, Mok NY, Brown N (2016) On the origins of three-dimensionality in drug-like molecules. Future Med Chem 8:1753–1767
Article
PubMed
Google Scholar
Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996
Article
CAS
Google Scholar
Lipkus AH, Yuan Q, Lucas KA, Funk SA, Bartelt WF III, Schenck RJ et al (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS Registry. J Org Chem. 73:4443–4451
Article
CAS
PubMed
Google Scholar
Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893
Article
CAS
PubMed
Google Scholar
Leach AR, Gillet VJ, editors. Selecting diverse sets of compounds. An introduction to chemoinformatics, Dordrecht: Springer Netherlands; 2007, p. 119–39.
Tutorials for Computer Aided Drug Design using KNIME workflows | KNIME. https://www.knime.com/blog/tutorials-for-computer-aided-drug-design-using-knime-workflows. Accessed 4 Sept 2020.
Gally J-M, Bourg S, Do Q-T, Aci-Sèche S, Bonnet P (2017) VSPrep: a general KNIME workflow for the preparation of molecules for virtual screening. Mol Inform 36:1700023
Article
CAS
Google Scholar
Sala Benito JV, Paini A, Richarz A-N, Meinl T, Berthold MR, Cronin MTD et al (2017) Automated workflows for modelling chemical fate, kinetics and toxicity. Toxicol In Vitro 45(Pt 2):249–257
Article
CAS
PubMed Central
PubMed
Google Scholar
Lagorce D, Bouslama L, Becot J, Miteva MA, Villoutreix BO (2017) FAF-Drugs4: free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics 33:3658–3660
Article
CAS
PubMed
Google Scholar
Bruns RF, Watson IA (2012) Rules for identifying potentially reactive or promiscuous compounds. J Med Chem 55:9763–9772
Article
CAS
PubMed
Google Scholar
Retrosynthetic analysis and synthesis planning in SciFinder. https://www.cas.org/products/scifinder/retrosynthesis-planning. Accessed 4 Sept 2020.
SynthiaTM organic retrosynthesis software. Sigma-Aldrich. https://www.sigmaaldrich.com/chemistry/chemical-synthesis/synthesis-software.html. Accessed 4 Sept 2020.
Spaya. https://beta.spaya.ai/app. Accessed 4 Sept 2020.
IBM RXN for Chemistry. https://rxn.res.ibm.com/. Accessed 4 Sept 2020.
Lin K, Xu Y, Pei J, Lai L (2020) Automatic retrosynthetic route planning using template-free models. Chem Sci 11:3355–3364
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwaller P, Petraglia R, Zullo V, Nair VH, Haeuselmann RA, Pisoni R et al (2020) Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem Sci 11:3316–3325
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnet P (2012) Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists. Eur J Med Chem 54:679–689
Article
CAS
PubMed
Google Scholar
SYLVIA - Estimation of the synthetic accessibility of organic compounds. https://www.mn-am.com/products/sylvia. Accessed 4 Sept 2020.
CAESA | Keymodule. https://www.keymodule.co.uk/products/caesa/index.html. Accessed: 13 Jun 2020.
Sitzmann M. WODCA synthesis design. https://www2.chemie.uni-erlangen.de/software/wodca/index.html. Accessed: 13 Jun 2020.
Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminformatics 1:8
Article
CAS
Google Scholar
Boda K, Seidel T, Gasteiger J (2007) Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des 21:311–325
Article
CAS
PubMed
Google Scholar
Fukunishi Y, Kurosawa T, Mikami Y, Nakamura H (2014) Prediction of synthetic accessibility based on commercially available compound databases. J Chem Inf Model 54:3259–3267
Article
CAS
PubMed
Google Scholar