Ntie-Kang F, Telukunta KK, Fobofou SAT et al (2021) Computational applications in secondary metabolite discovery (CAiSMD): an online workshop. J Cheminform 13:64
Article
PubMed
PubMed Central
Google Scholar
Wu J, Rajesh A, Huang Y-N et al (2021) Virtual meetings promise to eliminate geographical and administrative barriers and increase accessibility, diversity and inclusivity. Nat Biotechnol 40:133–137
Article
Google Scholar
Medina-Franco JL, López-López E (2022) The essence and transcendence of scientific publishing. Front Res Metr Anal 7:822453
Article
PubMed
PubMed Central
Google Scholar
Engel T, Gasteiger J (eds) (2018) Chemoinformatics—basic concepts and methods. Wiley, Hoboken.
Gasteiger J (2020) Chemistry in times of artificial intelligence. Chemphyschem 21:2233–2242
Article
CAS
PubMed
PubMed Central
Google Scholar
Engel T, Gasteiger J (eds) (2018) Applied chemoinformatics—achievements and future opportunities. Wiley, Hoboken
Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley, Hoboken
Google Scholar
NuBBE database. http://nubbe.iq.unesp.br/portal/nubbe-search.html. Accessed 28 Jul 2022
Smith JS, Isayev O, Roitberg AE (2017) ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem Sci 8:3192–3203
Article
CAS
PubMed
PubMed Central
Google Scholar
Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen M (2021) Collective variable-based enhanced sampling and machine learning. Eur Phys J B 94:211
Article
CAS
PubMed
PubMed Central
Google Scholar
Cruz J, Rondon-Villarreal P, Torres RG et al (2018) Design of bactericidal peptides against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Med Chem 14:741–752
Article
CAS
PubMed
Google Scholar
Plisson F, Ramírez-Sánchez O, Martínez-Hernández C (2020) Machine learning-guided discovery and design of non-hemolytic peptides. Sci Rep 10:16581
Article
CAS
PubMed
PubMed Central
Google Scholar
Ersilia (2022) https://www.ersilia.io/. Accessed 10
Duran-Frigola M, Pauls E, Guitart-Pla O, Bertoni M, Alcalde V, Amat D, Juan-Blanco T, Aloy P (2020) Extending the small-molecule similarity principle to all levels of biology with the Chemical checker. Nat Biotechnol 38:1087–1096
Article
CAS
PubMed
Google Scholar
Prieto-Martínez FD, Fernández-de Gortari E, Medina-Franco JL, Espinoza-Fonseca LM (2021) An in silico pipeline for the discovery of multitarget ligands: a case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition. Artif Intell Life Sci 1:100008
PubMed
PubMed Central
Google Scholar
Polishchuk P (2020) CReM: chemically reasonable mutations framework for structure generation. J Cheminform 12:28
Article
PubMed
PubMed Central
Google Scholar
Winter R, Montanari F, Steffen A, Briem H, Noé F, Clevert D-A (2019) Efficient multi-objective molecular optimization in a continuous latent space. Chem Sci 10:8016–8024
Article
CAS
PubMed
PubMed Central
Google Scholar
Chemotargets (2022) https://chemotargets.com/services/. Accessed 10
Hamzic S, Lewis R, Desrayaud S, Soylu C, Fortunato M, Gerebtzoff G, Rodríguez-Pérez R (2022) Predicting in vivo compound brain penetration using multi-task graph neural networks. J Chem Inf Model 62:3180–3190
Article
CAS
PubMed
Google Scholar
Rodríguez-Pérez R, Gerebtzoff G (2021) Identification of bile salt export pump inhibitors using machine learning: predictive safety from an industry perspective. Artif Intell Life Sci 1:100027
Google Scholar
Petit J, Meurice N, Kaiser C, Maggiora G (2012) Softening the rule of five–where to draw the line? Bioorg Med Chem 20:5343–5351
Article
CAS
PubMed
Google Scholar
Miranda-Quintana RA, Bajusz D, Rácz A, Héberger K (2021) Extended similarity indices: the benefits of comparing more than two objects simultaneously. Part 1: theory and characteristics†. J Cheminform 13:32
Article
PubMed
PubMed Central
Google Scholar
Miranda-Quintana RA, Rácz A, Bajusz D, Héberger K (2021) Extended similarity indices: the benefits of comparing more than two objects simultaneously. Part 2: speed, consistency, diversity selection. J Cheminform 13:33
Article
PubMed
PubMed Central
Google Scholar
Yoshimori A, Bajorath J (2021) Iterative DeepSARM modeling for compound optimization. Artif Intell Life Sci 1:100015
CAS
Google Scholar
Yoshimori A, Bajorath J (2020) Deep SAR matrix: SAR matrix expansion for advanced analog design using deep learning architectures. Future Drug Discov 2:FDD36
Article
Google Scholar
Méndez-Lucio O, Ahmad M, del Rio-Chanona EA, Wegner JK (2021) A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat Mach Intell 3:1033–1039
Article
Google Scholar
Oprea TI, Bologa CG, Brunak S et al (2018) Unexplored therapeutic opportunities in the human genome. Nat Rev Drug Discov 17:317–332
Article
CAS
PubMed
PubMed Central
Google Scholar
Binder J, Ursu O, Bologa C et al (2022) Machine learning prediction and tau-based screening identifies potential Alzheimer’s disease genes relevant to immunity. Commun Biol 5:125
Article
CAS
PubMed
PubMed Central
Google Scholar
Medina-Franco JL, Martinez-Mayorga K, Fernández-de Gortari E, Kirchmair J, Bajorath J (2021) Rationality over fashion and hype in drug design. F1000 Research 10:397
Article
Google Scholar
Zupan J, Novič M, Li X, Gasteiger J (1994) Classification of multicomponent analytical data of olive oils using different neural networks. Anal Chim Acta 292:219–234
Article
CAS
Google Scholar
Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F (2022) Natural product drug discovery in the artificial intelligence era. Chem Sci 13:1526–1546
Article
PubMed
Google Scholar
López-López E, Fernández-de Gortari E, Medina-Franco JL (2022) Yes SIR! On the structure-inactivity relationships in drug discovery. Drug Discov Today 27:2353–2362
Article
PubMed
Google Scholar
Sánchez-Cruz N, Pilón-Jiménez BA, Medina-Franco JL (2019) Functional group and diversity analysis of BIOFACQUIM: a mexican natural product database. F1000 Research 8:2071
Article
Google Scholar
Pilon AC, Valli M, Dametto AC, Pinto MEF, Freire RT, Castro-Gamboa I, Andricopulo AD, Bolzani VS (2017) NuBBEDB: an updated database to uncover chemical and biological information from brazilian biodiversity. Sci Rep 7:7215
Article
PubMed
PubMed Central
Google Scholar
Medina-Franco JL, López-López E, Andrade E, Ruiz-Azuara L, Frei A, Guan D, Zuegg J, Blaskovich MAT (2022) Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Discov Today 27:1420–1430
Article
CAS
PubMed
Google Scholar
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754
Article
CAS
PubMed
Google Scholar
Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280
Article
CAS
PubMed
Google Scholar
Johnson M, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York
Tanimoto T(1958) An elementary mathematical theory of classification and prediction. Internal IBM Technical Report
Jaccard P (1912) The distribution of the flora in the alpine zone.1. New Phytol 11:37–50
Article
Google Scholar
Martin YC, Kofron JL, Traphagen LM (2002) Do structurally similar molecules have similar biological activity? J Med Chem 45:4350–4358
Article
CAS
PubMed
Google Scholar
Bellman RE (2003) Dynamic programming. Courier Dover Publications, Inc, USA
Google Scholar
Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press, USA
Book
Google Scholar
Maggiora GM, Bajorath J (2014) Chemical space networks: a powerful new paradigm for the description of chemical space. J Comput-Aided Mol Des 28:795–802
Article
CAS
PubMed
Google Scholar
Maggiora GM (2014) Introduction to molecular similarity and chemical space. In: Martinez-Mayorga K, Medina-Franco JL (eds) Foodinformatics: applications of chemical information to food chemistry. Springer International Publishing, Cham, pp 1–81
Google Scholar
Medina-Franco JL, Chávez-Hernández AL, López-López E, Saldívar-González FI (2022) Chemical multiverse: an expanded view of chemical space. Mol Inf 41:2200116
Article
CAS
Google Scholar
Gentile F, Agrawal V, Hsing M, Ton A-T, Ban F, Norinder U, Gleave ME, Cherkasov A (2020) Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS Cent Sci 6:939–949
Article
CAS
PubMed
PubMed Central
Google Scholar
Gentile F, Yaacoub JC, Gleave J, Fernandez M, Ton A-T, Ban F, Stern A, Cherkasov A (2022) Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking. Nat Protoc 17:672–697
Article
CAS
PubMed
Google Scholar
Baek M, DiMaio F, Anishchenko I et al (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–876
Article
CAS
PubMed
PubMed Central
Google Scholar
Baek M, Baker D (2022) Deep learning and protein structure modeling. Nat Methods 19:13–14
Article
CAS
PubMed
Google Scholar
Silverman RB (2008) From basic science to blockbuster drug: the discovery of Lyrica. Angew Chem Int Ed Engl 47:3500–3504
Article
CAS
PubMed
Google Scholar
Garcia-Serna R, Vidal D, Remez N, Mestres J (2015) Large-scale predictive drug safety: from structural alerts to biological mechanisms. Chem Res Toxicol 28:1875–1887
Article
CAS
PubMed
Google Scholar
Waszkowycz B, Clark DE, Gancia E (2011) Outstanding challenges in protein–ligand docking and structure-based virtual screening. Wiley Interdiscip Rev Comput Mol Sci 1:229–259
Article
CAS
Google Scholar
Ross GA, Morris GM, Biggin PC (2013) One size does not fit all: the limits of structure-based models in drug discovery. J Chem Theory Comput 9:4266–4274
Article
CAS
PubMed
PubMed Central
Google Scholar
Hameduh T, Haddad Y, Adam V, Heger Z (2020) Homology modeling in the time of collective and artificial intelligence. Comput Struct Biotechnol J 18:3494–3506
Article
CAS
PubMed
PubMed Central
Google Scholar
Valanciute A, Nygaard L, Zschach H, Jepsen MM, Lindorff-Larsen K, Stein A (2022) Accurate protein stability predictions from homology models. bioRxiv 2022.07.12.499700
Zanette C, Bannan CC, Bayly CI, Fass J, Gilson MK, Shirts MR, Chodera JD, Mobley DL (2019) Toward learned chemical perception of force field typing rules. J Chem Theory Comput 15:402–423
Article
CAS
PubMed
Google Scholar
Bonati L, Rizzi V, Parrinello M (2020) Data-driven collective variables for enhanced sampling. J Phys Chem Lett 11:2998–3004
Article
CAS
PubMed
Google Scholar
Noé F, Olsson S, Köhler J, Wu H (2019) Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365:eaaw1147
Article
PubMed
Google Scholar
Wang DD, Chan M-T, Yan H (2021) Structure-based protein–ligand interaction fingerprints for binding affinity prediction. Comput Struct Biotechnol J 19:6291–6300
Article
CAS
PubMed
PubMed Central
Google Scholar
Da C, Kireev D (2014) Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. J Chem Inf Model 54:2555–2561
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Cruz N, Medina-Franco JL, Mestres J, Barril X (2021) Extended connectivity interaction features: improving binding affinity prediction through chemical description. Bioinformatics 37:1376–1382
Article
PubMed
Google Scholar
McNutt AT, Francoeur P, Aggarwal R, Masuda T, Meli R, Ragoza M, Sunseri J, Koes DR (2021) GNINA 1.0: molecular docking with deep learning. J Cheminform 13:43
Article
PubMed
PubMed Central
Google Scholar
Gainza P, Sverrisson F, Monti F, Rodolà E, Boscaini D, Bronstein MM, Correia BE (2020) Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat Methods 17:184–192
Article
CAS
PubMed
Google Scholar
Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M (2018) Weisfeiler and Leman go neural: higher-order graph neural networks. arXiv:1810.02244.
Chemotargets announces first ai-designed drug for Huntington’s disease to enter clinical trials. https://chemotargets.com/chemotargets-announces-first-ai-designed-drug-for-huntingtons-disease-to-enter-clinical-trials/. Accessed 27 Jun 2022
Jalencas X, Mestres J (2013) Chemoisosterism in the proteome. J Chem Inf Model 53:279–292
Article
CAS
PubMed
Google Scholar
Xu D, Zhang Y (2009) Generating triangulated macromolecular surfaces by euclidean distance transform. PLoS ONE 4:e8140
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Xing J, Xu Y et al (2015) In silico ADME/T modelling for rational drug design. Q Rev Biophys 48:488–515
Article
PubMed
Google Scholar
Huang K, Fu T, Gao W, Zhao Y, Roohani Y, Leskovec J, Coley CW, Xiao C, Sun J, Zitnik M(2021) Therapeutics Data Commons: Machine learning datasets and tasks for drug discovery and development. arXiv:2102.09548v2
Therapeutics Data Commons. https://tdcommons.ai/. Accessed 20 Jul 2022
Chemotargets(2022) CLARITY PV. https://chemotargets.com/clarity-pv/. Accessed 11 Jul 2022
Pye CR, Bertin MJ, Lokey RS, Gerwick WH, Linington RG (2017) Retrospective analysis of natural products provides insights for future discovery trends. Proc Natl Acad Sci USA 114:5601–5606
Article
CAS
PubMed
PubMed Central
Google Scholar
Valli M, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD, Bolzani VS (2013) Development of a natural products database from the biodiversity of Brazil. J Nat Prod 76:439–444
Article
CAS
PubMed
Google Scholar
Saldívar-González FI, Valli M, Andricopulo AD, da Silva Bolzani V, Medina-Franco JL (2019) Chemical space and diversity of the NuBBE database: a chemoinformatic characterization. J Chem Inf Model 59:74–85
Article
PubMed
Google Scholar
Rutz A, Sorokina M, Galgonek J et al (2022) The LOTUS initiative for open knowledge management in natural products research. Elife 11:e70780
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Kirchmair J (2020) Cheminformatics in natural product-based drug discovery. Mol Inf 39:e2000171
Article
Google Scholar
de Oliveira AS, Valli M, Ferreira LL et al (2022) Novel trypanocidal thiophen-chalcone cruzain inhibitors: structure- and ligand-based studies. Future Med Chem 14:795–808
Article
PubMed
Google Scholar
Fjell CD, Hiss JA, Hancock REW, Schneider G (2011) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11:37–51
Article
PubMed
Google Scholar
Cruz J, Suárez-Barrera MO, Rondón-Villarreal P, Olarte-Diaz A, Guzmán F, Visser L, Rueda-Forero NJ (2021) Computational study, synthesis and evaluation of active peptides derived from Parasporin-2 and spike protein from Alphacoronavirus against colorectal cancer cells. Biosci Rep 41:BSR20211964
Article
CAS
PubMed
PubMed Central
Google Scholar
Ropero-Vega JL, Redondo-Ortega JF, Rodríguez-Caicedo JP, Rondón-Villarreal P, Flórez-Castillo JM (2022) New PEPTIR-2.0 peptide designed for use as recognition element in electrochemical biosensors with improved specificity towards E. coli O157:H7. Molecules 27:2704
Article
CAS
PubMed
PubMed Central
Google Scholar
Huan Y, Kong Q, Mou H, Yi H (2020) Antimicrobial peptides: classification, design, application and research progress in multiple fields. Front Microbiol 11:582779
Article
PubMed
PubMed Central
Google Scholar
Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472
Article
CAS
PubMed
Google Scholar
Waghu FH, Barai RS, Gurung P, Idicula-Thomas S (2016) CAMPR3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res 44:D1094–D1097
Article
CAS
PubMed
Google Scholar
Melo MCR, Maasch JRMA, de la Fuente-Nuñez C (2021) Accelerating antibiotic discovery through artificial intelligence. Commun Biol 4:1050
Article
CAS
PubMed
PubMed Central
Google Scholar
Das P, Sercu T, Wadhawan K et al (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 5:613–623
Article
CAS
PubMed
Google Scholar
Medina-Franco JL(2021) DeLIRa: decisions-life impact relationships and decision cliffs in career development. Available at SSRN: https://doi.org/10.2139/ssrn.3973083