Corey EJ (1967) General methods for the construction of complex molecules. Pure Appl Chem 14(1):19–38
Article
CAS
Google Scholar
Corey EJ, Cramer RD, Howe WJ (1972) Computer-assisted synthetic analysis for complex molecules. Methods and procedures for machine generation of synthetic intermediates. J Am Chem Soc 94(2):440–459
Article
CAS
Google Scholar
Hanessian S, Franco J, Larouche B (1990) The psychobiological basis of heuristic synthesis planning - man, machine and the chiron approach. Pure Appl Chem 62(10):1887–1910
Article
CAS
Google Scholar
Ihlenfeldt W-D, Gasteiger J (1996) Computer-assisted planning of organic syntheses: the second generation of programs. Angew Chem Int Ed Engl 34(23–24):2613–2633
Article
Google Scholar
Ugi I, Bauer J, Bley K, Dengler A, Dietz A, Fontain E, Gruber B, Herges R, Knauer M, Reitsam K, Stein N (1993) Computer-assisted solution of chemical problems-the historical development and the present state of the art of a new discipline of chemistry. Angew Chem Int Ed Engl 32(2):201–227
Article
Google Scholar
Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, Bajczyk M, Grzybowski BA (2016) Computer-assisted synthetic planning: the end of the beginning. Angew Chem Int Ed 55(20):5904–5937
Article
Google Scholar
Klucznik T, Mikulak-Klucznik B, McCormack MP, Lima H, Szymkuć S, Bhowmick M, Molga K, Zhou Y, Rickershauser L, Gajewska EP, Toutchkine A, Dittwald P, Startek MP, Kirkovits GJ, Roszak R, Adamski A, Sieredzińska B, Mrksich M, Trice SLJ, Grzybowski BA (2018) Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4(3):522–532
Article
CAS
Google Scholar
Schwaller P, Petraglia R, Zullo V, Nair VH, Haeuselmann RA, Pisoni R, Bekas C, Iuliano A, Laino T (2020) Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem Sci 11(12):3316–3325
Article
CAS
Google Scholar
Watson IA, Wang J, Nicolaou CA (2019) A retrosynthetic analysis algorithm implementation. J Cheminformatics 11:1
Genheden S, Thakkar A, Chadimová V, Reymond J-L, Engkvist O, Bjerrum E (2020) AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J Cheminformatics 12: 70
Thakkar A, Kogej T, Reymond J-L, Engkvist O, Bjerrum EJ (2019) Datasets and their influence on the development of computer assisted synthesis planning tools in the pharmaceutical domain. Chem Sci 11(1):154–168
Article
Google Scholar
Segler MHS, Preuss M, Waller MP (2018) Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555(7698):604–610
Article
CAS
Google Scholar
Wang X, Qian Y, Gao H, Coley CW, Mo Y, Barzilay R, Jensen KF (2020) Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning. Chem Sci 11(40):10959–10972
Article
CAS
Google Scholar
Lin K, Xu Y, Pei J, Lai L (2020) Automatic retrosynthetic route planning using template-free models. Chem Sci 11(12):3355–3364
Article
CAS
Google Scholar
Wang Z, Zhang W, Liu B (2021) Computational analysis of synthetic planning: past and future. Chin J Chem 39(11):3127–3143
Article
CAS
Google Scholar
Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst 27
Bertz SH (1981) The first general index of molecular complexity. J Am Chem Soc 103(12):3599–3601
Article
CAS
Google Scholar
Bertz SH (1983) On the complexity of graphs and molecules. Bull Math Biol 45(5):849–855
Article
CAS
Google Scholar
Barone R, Chanon M (2001) A new and simple approach to chemical complexity. Application to the synthesis of natural products. J Chem Inf Comput Sci 41(2):269–272
Article
CAS
Google Scholar
Boda K, Seidel T, Gasteiger J (2007) Structure and reaction based evaluation of synthetic accessibility. J Comput Aided Mol Des 21(6):311–325
Article
CAS
Google Scholar
Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminformatics 1:8
Voršilák M, Kolář M, Čmelo I, Svozil D (2020) SYBA: Bayesian estimation of synthetic accessibility of organic compounds. J Cheminformatics 12:35
Yu J, Wang J, Zhao H, Gao J, Kang Y, Cao D, Wang Z, Hou T (2022) Organic compound synthetic accessibility prediction based on the graph attention mechanism. J Chem Inf Model 62(12):2973–2986
Article
CAS
Google Scholar
Coley CW, Rogers L, Green WH, Jensen KF (2018) SCScore: synthetic complexity learned from a reaction corpus. J Chem Inf Model 58(2):252–261
Article
CAS
Google Scholar
Thakkar A, Chadimová V, Bjerrum EJ, Engkvist O, Reymond J-L (2021) Retrosynthetic accessibility score (RAscore)—rapid machine learned synthesizability classification from AI driven retrosynthetic planning. Chem Sci 12(9):3339–3349
Article
CAS
Google Scholar
Li B, Chen H (2022) Prediction of compound synthesis accessibility based on reaction knowledge graph. Molecules 27(3):1039
Article
CAS
Google Scholar
Liu C-H, Korablyov M, Jastrzebski S, Włodarczyk-Pruszyński P, Bengio Y, Segler M (2022) Retrognn: fast estimation of synthesizability for virtual screening and de novo design by learning from slow retrosynthesis software. J Chem Inf Model 62(10):2293–2300
Article
CAS
Google Scholar
Genheden S, Bjerrum E (2022) PaRoutes: towards a framework for benchmarking retrosynthesis route predictions. Digit Discov 1(4):527–539
Article
Google Scholar
Bonnet P (2012) Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists. Eur J Med Chem 54:679–689
Article
CAS
Google Scholar
Baba Y, Isomura T, Kashima H (2018) Wisdom of crowds for synthetic accessibility evaluation. J Mol Graph Model 80:217–223
Article
CAS
Google Scholar
Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50(5):742–754
Article
CAS
Google Scholar
Hassan M, Brown RD, Varma-O’Brien S, Rogers D (2006) Cheminformatics analysis and learning in a data pipelining environment. Mol Divers 10(3):283–299
Article
CAS
Google Scholar
Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49(D1):1388–1395
Article
Google Scholar
RDKit: Open-source cheminformatics. https://rdkit.org/
Voršilák M, Svozil D (2017) Nonpher: computational method for design of hard-to-synthesize structures. J Cheminformatics 9:20
Article
Google Scholar
McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133
Article
Google Scholar
Lawson A.J, Swienty-Busch J, Géoui T, Evans D (2014) Chap. 8. The making of Reaxys—towards unobstructed access to relevant chemistry information. In: the future of the history of chemical information. ACS symposium series, vol 1164, pp 127–148. American Chemical Society, Washington, DC
Morgan HL (1965) The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. J Chem Doc 5(2):107–113
Article
CAS
Google Scholar
Gaulton A, Hersey A, Nowotka M, Bento AP, Chambers J, Mendez D, Mutowo P, Atkinson F, Bellis LJ, Cibrián-Uhalte E, Davies M, Dedman N, Karlsson A, Magariños MP, Overington JP, Papadatos G, Smit I, Leach AR (2017) The ChEMBL database in 2017. Nucleic Acids Res 45(D1):945–954
Article
Google Scholar
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232
Article
Google Scholar
Kocsis L, Szepesvári C (2006) Bandit based Monte-Carlo planning. In: Fürnkranz J, Scheffer T, Spiliopoulou M (eds) Machine learning: ECML 2006. Lecture notes in computer Science. Springer, Berlin, Heidelberg, pp 282–293
Chapter
Google Scholar
Coulom R (2007) Efficient selectivity and backup operators in Monte-Carlo tree search. In: van den Herik HJ, Ciancarini P, Donkers HHLMJ, eds. Computers and games. Lecture notes in computer science, pp 72–83. Springer, Berlin, Heidelberg
Chaslot GMJ-B, Winands MHM, Herik HJVD, Uiterwijk JWHM, Bouzy B (2008) Progressive strategies for Monte-Carlo tree search. New Math Natural Comput 04(03):343–357
Article
Google Scholar
Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28(1):31–36
Article
CAS
Google Scholar
Skoraczyński G, Dittwald P, Miasojedow B, Szymkuć S, Gajewska EP, Grzybowski BA, Gambin A (2017) Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? Sci Rep 7(1):3582
Article
Google Scholar
Medina-Franco JL (2021) Grand challenges of computer-aided drug design: the road ahead. Front Drug Discov 1:728551
Google Scholar
Jiang D, Wu Z, Hsieh C-Y, Chen G, Liao B, Wang Z, Shen C, Cao D, Wu J, Hou T (2021) Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models. J Cheminformatics 13:12
Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15(1):72–101
Article
Google Scholar
Student (1908) The probable error of a mean. Biometrika 6(1): 1–25