Konc J, Janežiž D (2014) Binding site comparison for function prediction and pharmaceutical discovery. Curr Opin Struct Biol 25:34–9
Article
CAS
PubMed
Google Scholar
Zheng X, Gan L, Wang E, Wang J (2013) Pocket-based drug design: exploring pocket space. AAPS J 15:228–241
Article
CAS
PubMed
Google Scholar
Pérot S, Sperandio O, Miteva M, Camproux A, Villoutreix B (2010) Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery. Drug Discov Today 15(15–16):656–667
Article
CAS
PubMed
Google Scholar
Tibaut T, Borišek J, Novič M, Turk D (2016) Comparison of in silico tools for binding site prediction applied for structure-based design of autolysin inhibitors. SAR QSAR Environ Res 27(7):573–587 (PMID: 27686112)
Article
CAS
PubMed
Google Scholar
Xie L, Xie L, Bourne PE (2011) Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol 21(2):189–99
Article
CAS
PubMed
PubMed Central
Google Scholar
Grove Laurie E, Sandor Vajda DK (2016) Computational methods to support fragment-based drug discovery. In: Fagerberg J, Mowery DC, Nelson RR (eds) Fragment-based drug discovery: lessons and outlook. Wiley, Weinheim, pp 197–222 (Chap. 9)
Chapter
Google Scholar
Laurie A, Jackson R (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Peptide Sci 7(5):395–406
Article
CAS
Google Scholar
Feinstein WP, Brylinski M (2015) Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J Cheminform 7(1):1–10
Article
CAS
Google Scholar
Lionta E, Spyrou G, Cournia DKV (2014) Zoe: structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938
Article
CAS
PubMed
PubMed Central
Google Scholar
Schomburg K, Bietz S, Briem H, Henzler A, Urbaczek S, Rarey M (2014) Facing the challenges of structure-based target prediction by inverse virtual screening. J Chem Inf Model 54(6):1676–86
Article
CAS
PubMed
Google Scholar
Degac J, Winter U, Helms V (2015) Graph-based clustering of predicted ligand-binding pockets on protein surfaces. J Chem Inf Model 55(9):1944–1952 (PMID: 26325445)
Article
CAS
PubMed
Google Scholar
Meyers J, Brown N, Blagg J (2016) Mapping the 3D structures of small molecule binding sites. J Cheminform 8(1):70
Article
CAS
PubMed Central
Google Scholar
Monzon AM, Zea DJ, Fornasari MS, Saldaño TE, Fernandez-Alberti S, Tosatto SCE, Parisi G (2017) Conformational diversity analysis reveals three functional mechanisms in proteins. PLOS Comput Biol 13(2):1–18
Article
CAS
Google Scholar
Shen Q, Cheng F, Song H, Lu W, Zhao J, An X, Liu M, Chen G, Zhao Z, Zhang J (2017) Proteome-scale investigation of protein allosteric regulation perturbed by somatic mutations in 7000 cancer genomes. Am J Hum Genet 100(1):5–20
Article
CAS
PubMed
Google Scholar
Bhagavat R, Sankar S, Srinivasan N, Chandra N (2018) An augmented pocketome: detection and analysis of small-molecule binding pockets in proteins of known 3D structure. Structure 26(3):499–5122
Article
CAS
PubMed
Google Scholar
Hussein H, Borrel A, Geneix C, Petitjean M, Regad L, Camproux A (2015) PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res 43(W1):436–442
Article
CAS
Google Scholar
Huang W, Lu S, Huang Z, Liu X, Mou L, Luo Y, Zhao Y, Liu Y, Chen Z, Hou T, Zhang J (2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29(18):2357–2359
Article
CAS
PubMed
Google Scholar
Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10(1):168
Article
Google Scholar
Henrich S, Outi S, Huang B, Rippmann F, Cruciani G, Wade R (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit JMR 23(2):209–219
CAS
PubMed
Google Scholar
Leis S, Schneider S, Zacharias M (2010) In silico prediction of binding sites on proteins. Curr Med Chem 17(15):1550–1562
Article
CAS
PubMed
Google Scholar
Chen K, Mizianty M, Gao J, Kurgan L (2011) A critical comparative assessment of predictions of protein-binding sites for biologically relevant organic compounds. Structure (London, England : 1993) 19(5):613–621
Article
CAS
Google Scholar
Fauman EB, Rai BK, Huang ES (2011) Structure-based druggability assessment-identifying suitable targets for small molecule therapeutics. Curr Opin Chem Biol 15(4):463–468 (Next Generation Therapeutics)
Article
CAS
PubMed
Google Scholar
Roche DB, Brackenridge DA, McGuffin LJ (2015) Proteins and their interacting partners: an introduction to protein-ligand binding site prediction methods. Int J Mol Sci 16(12):29829–29842
Article
CAS
PubMed
PubMed Central
Google Scholar
Broomhead NK, Soliman ME (2017) Can we rely on computational predictions to correctly identify ligand binding sites on novel protein drug targets? Assessment of binding site prediction methods and a protocol for validation of predicted binding sites. Cell Biochem Biophys 75(1):15–23
Article
CAS
PubMed
Google Scholar
Simões T, Lopes D, Dias S, Fernandes F, Pereira J, Jorge J, Bajaj C, Gomes A (2017) Geometric detection algorithms for cavities on protein surfaces in molecular graphics: a survey. In: Computer graphics forum
Krivak R, Hoksza D (2015) Improving protein-ligand binding site prediction accuracy by classification of inner pocket points using local features. J Cheminform 7(1):12
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Li Y, Lin B, Schroeder M, Huang B (2011) Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics (Oxford, England) 27(15):2083–2088
Article
CAS
Google Scholar
Ghersi D, Sanchez R (2009) EasyMIFS and SiteHound: a toolkit for the identification of ligand-binding sites in protein structures. Bioinformatics (Oxford, England) 25(23):3185–3186
Article
CAS
Google Scholar
Kauffman C, Karypis G (2009) Librus: combined machine learning and homology information for sequence-based ligand-binding residue prediction. Bioinformatics (Oxford, England) 25(23):3099–107
Article
CAS
Google Scholar
Qiu Z, Wang X (2011) Improved prediction of protein ligand-binding sites using random forests. Protein Peptide Lett 18(12):1212–1218
Article
CAS
Google Scholar
Chen P, Huang JZ, Gao X (2014) Ligandrfs: random forest ensemble to identify ligand-binding residues from sequence information alone. BMC Bioinform 15(Suppl 15):4
Article
Google Scholar
Jian JW, Elumalai P, Pitti T, Wu CY, Tsai KC, Chang JY, Peng HP, Yang AS (2016) Predicting ligand binding sites on protein surfaces by 3-Dimensional probability density distributions of interacting atoms. PLoS ONE 11(8):0160315
Google Scholar
Jiménez J, Doerr S, Martínez-Rosell G, Rose AS, De Fabritiis G (2017) Deepsite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33(19):3036–3042
Article
CAS
PubMed
Google Scholar
Nayal M, Honig B (2006) On the nature of cavities on protein surfaces: application to the identification of drug-binding sites. Proteins 63(4):892–906
Article
CAS
PubMed
Google Scholar
Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model 49(2):377–389 (PMID: 19154148)
Article
CAS
PubMed
Google Scholar
Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5(12):1000585
Article
CAS
Google Scholar
Wass MN, Kelley LA, Sternberg MJ (2017) 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res 38(Web Server issue):469–73
Google Scholar
Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26(1):46–52
Article
CAS
PubMed
Google Scholar
Volkamer A, Griewel A, Grombacher T, Rarey M (2010) Analyzing the topology of active sites: on the prediction of pockets and subpockets. J Chem Inf Model 50(11):2041–52
Article
CAS
PubMed
Google Scholar
Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S (2012) FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28(2):286–7
Article
CAS
PubMed
Google Scholar
Xie Z, Hwang M (2012) Ligand-binding site prediction using ligand-interacting and binding site-enriched protein triangles. Bioinformatics 28(12):1579–1585
Article
CAS
PubMed
Google Scholar
Roy A, Yang J, Zhang Y (2012) Cofactor: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40(W1):471–477
Article
CAS
Google Scholar
Yang J, Roy A, Zhang Y (2013) Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29(20):2588–2595
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HS, Im W (2013) Ligand binding site detection by local structure alignment and its performance complementarity. J Chem Inf Model 53(9):2462–2470 (PMID: 23957286)
Article
CAS
PubMed
Google Scholar
Brylinski M, Feinstein WP (2013) eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des 27(6):551–567
Article
CAS
PubMed
Google Scholar
Heo L, Shin W, Lee M, Seok C (2014) GalaxySite: ligand-binding-site prediction by using molecular docking. Nucleic Acids Res 42(W1):210–214
Article
CAS
Google Scholar
Viet Hung L, Caprari S, Bizai M, Toti D, Polticelli F (2015) Libra: ligand binding site recognition application. Bioinformatics 31(24):4020–4022
Google Scholar
Gao J, Zhang Q, Liu M, Zhu L, Wu D, Cao Z, Zhu R (2016) bSiteFinder, an improved protein-binding sites prediction server based on structural alignment: more accurate and less time-consuming. J Cheminform 8(1):38
Article
PubMed
PubMed Central
Google Scholar
Krivák R, Hoksza D (2015) In: Dediu A-H, Hernández-Quiroz F, Martín-Vide C, Rosenblueth AD (eds) P2RANK: knowledge-based ligand binding site prediction using aggregated local features. Springer, Cham, pp 41–52
Huang B, Schroeder M (2006) Ligsitecsc: predicting ligand binding sites using the connolly surface and degree of conservation. BMC Struct Biol 6(1):19
Article
CAS
PubMed
PubMed Central
Google Scholar
Laskowski RA, Watson JD, Thornton JM (2005) Profunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:89–93
Article
CAS
Google Scholar
Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci USA 105(1):129–134
Article
PubMed
Google Scholar
Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to protein function prediction. Briefings Bioinform 10(4):378–391
Article
CAS
Google Scholar
Lee J, Freddolino PL, Zhang Y (2017) In: Rigden DJ (ed) Ab initio protein structure prediction. Springer, Dordrecht, pp 3–35
Karanicolas J, Corn J et al (2011) A de novo protein binding pair by computational design and directed evolution. Mol Cell 42(2):250–260
Article
CAS
PubMed
PubMed Central
Google Scholar
Damborsky J, Brezovsky J (2014) Computational tools for designing and engineering enzymes. Curr Opin Chem Biol 19(Supplement C):8–16 (Biocatalysis and biotransformation Bioinorganic chemistry)
Article
CAS
PubMed
Google Scholar
Wang M, Zhao H (2016) In: Stoddard BL (ed) Combined and iterative use of computational design and directed evolution for protein–ligand binding design. Springer, New York, pp 139–153
Di Pietro O, Juárez-Jiménez J, Muñoz-Torrero D, Laughton CA, Luque FJ (2017) Unveiling a novel transient druggable pocket in bace-1 through molecular simulations: conformational analysis and binding mode of multisite inhibitors. PLOS ONE 12(5):1–22
Article
CAS
Google Scholar
Gallo Cassarino T, Bordoli L, Schwede T (2014) Assessment of ligand binding site predictions in CASP10. Proteins Struct Funct Bioinform 82:154–163
Article
CAS
Google Scholar
Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T (2013) The protein model portal-a comprehensive resource for protein structure and model information. Database 2013:031
Article
CAS
Google Scholar
Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11(2):184–197
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidtke P, Axel B, Luque F, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics (Oxford, England) 27(23):3276–3285
Article
CAS
Google Scholar
Stank A, Kokh DB, Horn M, Sizikova E, Neil R, Panecka J, Richter S, Wade RC (2017) Trapp webserver: predicting protein binding site flexibility and detecting transient binding pockets. Nucleic Acids Res 45(W1):325–330
Article
CAS
Google Scholar
Schrödinger LLC (2015) The PyMOL molecular graphics system, version 1.8
Desaphy J, Bret G, Rognan D, Kellenberger E (2015) sc-PDB: a 3D-database of ligandable binding sites-10 years on. Nucleic Acids Res 43(D1):399–404
Article
CAS
Google Scholar
Ragoza M, Hochuli J, Idrobo E, Sunseri J, Koes DR (2017) Protein-ligand scoring with convolutional neural networks. J Chem Inf Model 57(4):942–957 (PMID: 28368587)
Article
CAS
PubMed
PubMed Central
Google Scholar
Ragoza M, Turner L, Koes DR (2017) Ligand pose optimization with atomic grid-based convolutional neural networks. ArXiv e-prints
Schmidtke P (2011) Protein-ligand binding sites. Identification, characterization and interrelations. Ph.D. thesis, University of Barcelona
Eisenhaber F, Lijnzaad P, Argos P, Sander C, Scharf M (1995) The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 16(3):273–284
Article
CAS
Google Scholar
Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E (2003) The chemistry development kit (CDK): An open-source Java library for chemo- and bioinformatics. J Chem Inf Comput Sci 43(2):493–500 (PMID: 12653513)
Article
CAS
PubMed
PubMed Central
Google Scholar
Morita M, Nakamura S, Shimizu K (2008) Highly accurate method for ligand-binding site prediction in unbound state (apo) protein structures. Proteins 73(2):468–79
Article
CAS
PubMed
Google Scholar
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132
Article
CAS
PubMed
Google Scholar
Desaphy J, Azdimousa K, Kellenberger E, Rognan D (2012) Comparison and druggability prediction of protein-ligand binding sites from pharmacophore-annotated cavity shapes. J Chem Inf Model 52(8):2287–2299
Article
CAS
PubMed
Google Scholar
Kapcha LH, Rossky PJ (2014) A simple atomic-level hydrophobicity scale reveals protein interfacial structure. J Mol Biol 426(2):484–498
Article
CAS
PubMed
Google Scholar
Khazanov NA, Carlson HA (2013) Exploring the composition of protein-ligand binding sites on a large scale. PLoS Comput Biol 9(11):1003321
Article
CAS
Google Scholar
Pintar A, Carugo O, Pongor S (2002) Cx, an algorithm that identifies protruding atoms in proteins. Bioinformatics 18(7):980–984
Article
CAS
PubMed
Google Scholar
Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540
CAS
PubMed
Google Scholar
Hartshorn M, Verdonk M, Chessari G, Brewerton S, Mooij W, Mortenson P, Murray C (2007) Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem 50(4):726–741
Article
CAS
PubMed
Google Scholar
Schmidtke P, Souaille C, Estienne F, Baurin N, Kroemer R (2010) Large-scale comparison of four binding site detection algorithms. J Chem Inf Model 50(12):2191–200
Article
CAS
PubMed
Google Scholar
Hu L, Benson ML, Smith RD, Lerner MG, Carlson HA (2005) Binding moad (mother of all databases). Proteins Struct Funct Bioinform 60(3):333–340
Article
CAS
Google Scholar
Zhu H, Pisabarro MT (2011) MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets. Bioinformatics 27(3):351–358
Article
CAS
PubMed
Google Scholar