Yang X, Zhang J, Yoshizoe K, Terayama K, Tsuda K (2017) ChemTS: an efficient python library for *de novo* molecular generation. Sci Technol Adv Mater 18(1):972–976

CAS
PubMed
PubMed Central
Google Scholar

Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha DG, Wu T et al (2016) Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 15(10):1120

PubMed
Google Scholar

Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276

PubMed
PubMed Central
Google Scholar

Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360–365

CAS
PubMed
Google Scholar

Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A (2017) druGAN: an advanced generative adversarial autoencoder model for *de novo* generation of new molecules with desired molecular properties *in silico*. Mol Pharm 14(9):3098–3104

CAS
PubMed
Google Scholar

Olier I, Sadawi N, Bickerton GR, Vanschoren J, Grosan C, Soldatova L, King RD (2018) Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Mach Learn 107(1):285–311

PubMed
Google Scholar

Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for *de novo* drug design. Sci Adv 4(7):eaap7885

CAS
PubMed
PubMed Central
Google Scholar

Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H et al (2018) Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 3:5–20

CAS
Google Scholar

Colby SM, Nuñez JR, Hodas NO, Corley CD, Renslow RR (2020) Deep learning to generate in silico chemical property libraries and candidate molecules for small molecule identification in complex samples. Anal Chem 92(2):1720–1729

CAS
PubMed
Google Scholar

Baskin II (2020) The power of deep learning to ligand-based novel drug discovery. Expert Opin Drug Discov. https://doi.org/10.1080/17460441.2020.1745183

Article
PubMed
Google Scholar

Hong SH, Ryu S, Lim J, Kim WY (2020) Molecular generative model based on an adversarially regularized autoencoder. J Chem Inf Model 60(1):29–36

CAS
PubMed
Google Scholar

Lim J, Hwang SY, Moon S, Kim S, Kim WY (2020) Scaffold-based molecular design with a graph generative model. Chem Sci 11(4):1153–1164

CAS
Google Scholar

Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T (2020) DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 11(9):2531–2557

CAS
PubMed
PubMed Central
Google Scholar

Yasonik J (2020) Multiobjective *de novo* drug design with recurrent neural networks and nondominated sorting. J Cheminform 12(1):14

PubMed Central
PubMed
Google Scholar

Yoshimori A, Kawasaki E, Kanai C, Tasaka T (2020) Strategies for design of molecular structures with a desired pharmacophore using deep reinforcement learning. Chem Pharm Bull (Tokyo) 68(3):227–233

Google Scholar

Walters WP, Murcko M (2020) Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol 38(2):143–145

CAS
PubMed
Google Scholar

Griffiths RR, Hernández-Lobato JM (2020) Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem Sci 11(2):577–586

CAS
PubMed
Google Scholar

Cova TFGG, Pais AACC (2019) Deep learning for deep chemistry: optimizing the prediction of chemical patterns. Front Chem 7:809

PubMed
PubMed Central
Google Scholar

Noh J, Kim J, Stein HS, Sanchez-Lengeling B, Gregoire JM, Aspuru-Guzik A, Jung Y (2019) Inverse design of solid-state materials via a continuous representation. Matter 1(5):1370–1384

Google Scholar

Grisoni F, Schneider G (2019) *De novo* molecular design with generative long short-term memory. Chimia 73(12):1006–1011

CAS
PubMed
Google Scholar

Grisoni F, Merk D, Friedrich L, Schneider G (2019) Design of natural-product-inspired multitarget ligands by machine learning. ChemMedChem 14(12):1129–1134

CAS
PubMed
Google Scholar

Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G (2018) Generative Recurrent Networks for *de novo* drug design. Mol Inform 37(1–2):1700111

Google Scholar

Merk D, Friedrich L, Grisoni F, Schneider G (2018) De novo design of bioactive small molecules by artificial intelligence. Mol Inform 37(1–2):1700153

PubMed Central
Google Scholar

Schneider G (2018) Generative models for artificially-intelligent molecular design. Mol Inform 37(1–2):188031

Google Scholar

Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS et al (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 19:353–364

PubMed
Google Scholar

Button A, Merk D, Hiss JA, Schneider G (2019) Automated *de novo* molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat mach Intell 1(7):307–315

Google Scholar

Moret M, Friedrich L, Grisoni F, Merk D, Schneider G (2020) Generative molecular design in low data regimes. Nat Mach Intell 2:171–180

Google Scholar

Ståhl N, Falkman G, Karlsson A, Mathiason G, Boström J (2019) Deep reinforcement learning for multiparameter optimization in *de novo* drug design. J Chem Inf Model 59(7):3166–3176

PubMed
Google Scholar

Arús-Pous J, Blaschke T, Ulander S, Reymond JL, Chen H, Engkvist O (2019) Exploring the GDB-13 chemical space using deep generative models. J Cheminform 11(1):20

PubMed
PubMed Central
Google Scholar

Reymond JL (2015) The Chemical Space Project. Acc Chem Res 48(3):722–730

CAS
PubMed
Google Scholar

Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50

CAS
PubMed
Google Scholar

Ertl P (2003) Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43(2):374–380

CAS
PubMed
Google Scholar

O’Hagan S, Kell DB (2018) Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol J 13(1):1700503

Google Scholar

You J, Liu B, Ying R, Pande V, Leskovec J: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. *arXiv* 2018:1806.02473v02471

Dimova D, Stumpfe D, Bajorath J (2014) Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs. J Med Chem 57:6553–6563

CAS
PubMed
Google Scholar

Stumpfe D, Hu Y, Dimova D, Bajorath J (2014) Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem 57(1):18–28

CAS
PubMed
Google Scholar

Stumpfe D, Dimova D, Bajorath J (2014) Composition and topology of activity cliff clusters formed by bioactive compounds. J Chem Inf Model 54(2):451–461

CAS
PubMed
Google Scholar

Teixeira AL, Leal JP, Falcao AO (2013) Random forests for feature selection in QSPR models—an application for predicting standard enthalpy of formation of hydrocarbons. J Cheminform 5(1):9

CAS
PubMed
PubMed Central
Google Scholar

Ambure P, Halder AK, Gonzalez Diaz H, Cordeiro M (2019) QSAR-co: an open source software for developing robust multitasking or multitarget classification-based QSAR models. J Chem Inf Model 59(6):2538–2544

CAS
PubMed
Google Scholar

Zupan J, Gasteiger J (1993) Neural networks for chemists. Verlag Chemie, Weinheim

Google Scholar

Livingstone D (1995) Data analysis for chemists. Oxford University Press, Oxford

Google Scholar

Mahé P, Vert JP (2009) Virtual screening with support vector machines and structure kernels. Comb Chem High Throughput Screen 12(4):409–423

PubMed
Google Scholar

O’Hagan S, Kell DB (2015) The KNIME workflow environment and its applications in Genetic Programming and machine learning. Genetic Progr Evol Mach 16:387–391

Google Scholar

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

CAS
PubMed
Google Scholar

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

PubMed
Google Scholar

Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35(1):3–14

CAS
PubMed
Google Scholar

Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM et al (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15(141):20170387

PubMed
PubMed Central
Google Scholar

Mater AC, Coote ML (2019) Deep Learning in Chemistry. J Chem Inf Model 59(6):2545–2559

CAS
PubMed
Google Scholar

Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57(8):1757–1772

CAS
PubMed
Google Scholar

Weininger D (1988) SMILES, a chemical language and information system.1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36

CAS
Google Scholar

Dai H, Tian Y, Dai B, Skiena S, Song L (2018) Syntax-directed variational autoencoder for structured data. *arXiv*. 1802.08786v08721

Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar Variational Autoencoder. *arXiv*. 1703.01925v01921

Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen HM (2018) Application of generative autoencoder in *de novo* molecular design. Mol Inform 37(1–2):1700123

Google Scholar

Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J (2019) Deep learning for molecular generation. Future Med Chem 11(6):567–597

CAS
PubMed
Google Scholar

O’Boyle N, Dalke A (2018) DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures. *ChemRxiv.* 7097960.v7097961

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Boston

Google Scholar

Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackerman Z et al (2020) A deep learning approach to antibiotic discovery. Cell 180(4):688–702

CAS
PubMed
PubMed Central
Google Scholar

Zahoránszky-Kőhalmi G, Bologa CG, Oprea TI (2016) Impact of similarity threshold on the topology of molecular similarity networks and clustering outcomes. J Cheminform 8:16

PubMed
PubMed Central
Google Scholar

Segler MHS, Kogej T, Tyrchan C, Waller MP (2017) Generating focussed molecule libraries for drug discovery with recurrent neural networks. *arXiv.* 1701.01329v01321

van Deursen R, Ertl P, Tetko IV, Godin G (2020) GEN: highly efficient SMILES explorer using autodidactic generative examination networks. J Cheminform 12(1):22

PubMed Central
PubMed
Google Scholar

O’Hagan S, Kell DB (2017) Consensus rank orderings of molecular fingerprints illustrate the ‘most genuine’ similarities between marketed drugs and small endogenous human metabolites, but highlight exogenous natural products as the most important ‘natural’ drug transporter substrates. ADMET DMPK 5(2):85–125

Google Scholar

Kajino H (2018) Molecular hypergraph grammar with its application to molecular optimization. *arXiv.* 1809.02745v02741

Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation. *arXiv* 2018:1802.04364v04362

Zang C, Wang F (2020) MoFlow: an invertible flow model for generating molecular graphs. *arXiv.* 2006.10137

Tavakoli M, Baldi P (2020) Continuous representation of molecules using graph variational autoencoder. *arXiv*:2004.08152v08151

Samanta B, De A, Ganguly N, Gomez-Rodriguez M (2018) Designing random graph models using variational autoencoders with applications to chemical design. *arXiv*.1802.05283

Flam-Shepherd D, Wu T, Aspuru-Guzik A (2020) Graph deconvolutional generation. *arXiv.* 2002.07087v07081

Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30(8):595–608

CAS
PubMed
PubMed Central
Google Scholar

Bresson X, Laurent T (2019) A two-step graph convolutional decoder for molecule generation. *arXiv.* 1906.03412

Kearnes S, Li L, Riley P (2019) Decoding molecular graph embeddings with reinforcement learning. *arXiv.* 1904.08915

Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98

CAS
PubMed
PubMed Central
Google Scholar

Zhang Z, Cui P, Zhu W (2018) Deep learning on graphs: a survey. *arXi*: 1812.04202v04201

Barron JT (2017) A general and adaptive robust loss function. *arXiv.* 1701.03077v03010

Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M et al (2019) Analyzing learned molecular representations for property prediction. *arXiv.* 1904.01561v01564

Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59(8):3370–3388

CAS
PubMed
PubMed Central
Google Scholar

Goodacre R, Trew S, Wrigley-Jones C, Saunders G, Neal MJ, Porter N, Kell DB (1995) Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of *Penicillium chryosgenum* fermentations for the overproduction of penicillins. Anal Chim Acta 313:25–43

CAS
Google Scholar

Jarrett K, Kavukcuoglu K, Ranzato M, Lecun Y (2009) What is the best multi-stage architecture for object recognition? IEEE I Conf Comp Vis; pp. 2146–2153

Ashkezari-Toussi S, Sadoghi-Yazdi H (2019) Robust diffusion LMS over adaptive networks. Signal Process 158:201–209

Google Scholar

Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A (2017) Objective-Reinforced Generative Adversarial Networks (ORGAN) for sequence generation models. *arXiv.* 1705.10843

Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1(1):8

PubMed
PubMed Central
Google Scholar

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. *arXiv*. 1707.06347v06342

Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-dimensional continuous control using generalized advantage estimation. *arXiv*. 1506.02438

Levine S, Koltun V (2013) Guided policy search. Proc ICML 28:1–9

Google Scholar

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Proc AISTATs 9:249–256

Google Scholar

Li Y, Wei C, Ma T (2019) Towards explaining the regularization effect of initial large learning rate in training neural networks. *arXiv*. 1907.04595v04592

Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337

CAS
PubMed
PubMed Central
Google Scholar

Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA et al (2012) Automated design of ligands to polypharmacological profiles. Nature 492(7428):215–220

CAS
PubMed
Google Scholar

Nettles JH, Jenkins JL, Bender A, Deng Z, Davies JW, Glick M (2006) Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J Med Chem 49(23):6802–6810

CAS
PubMed
Google Scholar

Hu G, Kuang G, Xiao W, Li W, Liu G, Tang Y (2012) Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. J Chem Inf Model 52(5):1103–1113

CAS
PubMed
Google Scholar

Oprea TI (2002) On the information content of 2D and 3D descriptors for QSAR. J Brazil Chem Soc 13(6):811–815

CAS
Google Scholar

Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comp Sci 37(1):1–9

CAS
Google Scholar

Hong HX, Xie Q, Ge WG, Qian F, Fang H, Shi LM, Su ZQ, Perkins R, Tong WD (2008) Mold^{2}, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48(7):1337–1344

CAS
PubMed
Google Scholar

Hann MM, Keserü GM (2012) Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 11(5):355–365

CAS
PubMed
Google Scholar

Pitt WR, Parry DM, Perry BG, Groom CR (2009) Heteroaromatic rings of the future. J Med Chem 52:2952–2963

CAS
PubMed
Google Scholar

Roughley SD, Jordan AM (2011) The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem 54(10):3451–3479

CAS
PubMed
Google Scholar

Scalia G, Grambow CA, Pernici B, Li Y-P, Green WH (2019) Evaluating scalable uncertainty estimation methods for DNN-based molecular property prediction. *arXiv.* 1910.03127

Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model 59(3):1096–1108

CAS
PubMed
Google Scholar