Yang X, Zhang J, Yoshizoe K, Terayama K, Tsuda K (2017) ChemTS: an efficient python library for de novo molecular generation. Sci Technol Adv Mater 18(1):972–976
CAS
PubMed
PubMed Central
Google Scholar
Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, Chae HS, Einzinger M, Ha DG, Wu T et al (2016) Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 15(10):1120
PubMed
Google Scholar
Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4(2):268–276
PubMed
PubMed Central
Google Scholar
Sanchez-Lengeling B, Aspuru-Guzik A (2018) Inverse molecular design using machine learning: generative models for matter engineering. Science 361(6400):360–365
CAS
PubMed
Google Scholar
Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A (2017) druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm 14(9):3098–3104
CAS
PubMed
Google Scholar
Olier I, Sadawi N, Bickerton GR, Vanschoren J, Grosan C, Soldatova L, King RD (2018) Meta-QSAR: a large-scale application of meta-learning to drug design and discovery. Mach Learn 107(1):285–311
PubMed
Google Scholar
Popova M, Isayev O, Tropsha A (2018) Deep reinforcement learning for de novo drug design. Sci Adv 4(7):eaap7885
CAS
PubMed
PubMed Central
Google Scholar
Tabor DP, Roch LM, Saikin SK, Kreisbeck C, Sheberla D, Montoya JH, Dwaraknath S, Aykol M, Ortiz C, Tribukait H et al (2018) Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 3:5–20
CAS
Google Scholar
Colby SM, Nuñez JR, Hodas NO, Corley CD, Renslow RR (2020) Deep learning to generate in silico chemical property libraries and candidate molecules for small molecule identification in complex samples. Anal Chem 92(2):1720–1729
CAS
PubMed
Google Scholar
Baskin II (2020) The power of deep learning to ligand-based novel drug discovery. Expert Opin Drug Discov. https://doi.org/10.1080/17460441.2020.1745183
Article
PubMed
Google Scholar
Hong SH, Ryu S, Lim J, Kim WY (2020) Molecular generative model based on an adversarially regularized autoencoder. J Chem Inf Model 60(1):29–36
CAS
PubMed
Google Scholar
Lim J, Hwang SY, Moon S, Kim S, Kim WY (2020) Scaffold-based molecular design with a graph generative model. Chem Sci 11(4):1153–1164
CAS
Google Scholar
Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T (2020) DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 11(9):2531–2557
CAS
PubMed
PubMed Central
Google Scholar
Yasonik J (2020) Multiobjective de novo drug design with recurrent neural networks and nondominated sorting. J Cheminform 12(1):14
PubMed Central
PubMed
Google Scholar
Yoshimori A, Kawasaki E, Kanai C, Tasaka T (2020) Strategies for design of molecular structures with a desired pharmacophore using deep reinforcement learning. Chem Pharm Bull (Tokyo) 68(3):227–233
Google Scholar
Walters WP, Murcko M (2020) Assessing the impact of generative AI on medicinal chemistry. Nat Biotechnol 38(2):143–145
CAS
PubMed
Google Scholar
Griffiths RR, Hernández-Lobato JM (2020) Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem Sci 11(2):577–586
CAS
PubMed
Google Scholar
Cova TFGG, Pais AACC (2019) Deep learning for deep chemistry: optimizing the prediction of chemical patterns. Front Chem 7:809
PubMed
PubMed Central
Google Scholar
Noh J, Kim J, Stein HS, Sanchez-Lengeling B, Gregoire JM, Aspuru-Guzik A, Jung Y (2019) Inverse design of solid-state materials via a continuous representation. Matter 1(5):1370–1384
Google Scholar
Grisoni F, Schneider G (2019) De novo molecular design with generative long short-term memory. Chimia 73(12):1006–1011
CAS
PubMed
Google Scholar
Grisoni F, Merk D, Friedrich L, Schneider G (2019) Design of natural-product-inspired multitarget ligands by machine learning. ChemMedChem 14(12):1129–1134
CAS
PubMed
Google Scholar
Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G (2018) Generative Recurrent Networks for de novo drug design. Mol Inform 37(1–2):1700111
Google Scholar
Merk D, Friedrich L, Grisoni F, Schneider G (2018) De novo design of bioactive small molecules by artificial intelligence. Mol Inform 37(1–2):1700153
PubMed Central
Google Scholar
Schneider G (2018) Generative models for artificially-intelligent molecular design. Mol Inform 37(1–2):188031
Google Scholar
Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow RA, Fisher J, Jansen JM, Duca JS, Rush TS et al (2020) Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov 19:353–364
PubMed
Google Scholar
Button A, Merk D, Hiss JA, Schneider G (2019) Automated de novo molecular design by hybrid machine intelligence and rule-driven chemical synthesis. Nat mach Intell 1(7):307–315
Google Scholar
Moret M, Friedrich L, Grisoni F, Merk D, Schneider G (2020) Generative molecular design in low data regimes. Nat Mach Intell 2:171–180
Google Scholar
Ståhl N, Falkman G, Karlsson A, Mathiason G, Boström J (2019) Deep reinforcement learning for multiparameter optimization in de novo drug design. J Chem Inf Model 59(7):3166–3176
PubMed
Google Scholar
Arús-Pous J, Blaschke T, Ulander S, Reymond JL, Chen H, Engkvist O (2019) Exploring the GDB-13 chemical space using deep generative models. J Cheminform 11(1):20
PubMed
PubMed Central
Google Scholar
Reymond JL (2015) The Chemical Space Project. Acc Chem Res 48(3):722–730
CAS
PubMed
Google Scholar
Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16(1):3–50
CAS
PubMed
Google Scholar
Ertl P (2003) Cheminformatics analysis of organic substituents: identification of the most common substituents, calculation of substituent properties, and automatic identification of drug-like bioisosteric groups. J Chem Inf Comput Sci 43(2):374–380
CAS
PubMed
Google Scholar
O’Hagan S, Kell DB (2018) Analysing and navigating natural products space for generating small, diverse, but representative chemical libraries. Biotechnol J 13(1):1700503
Google Scholar
You J, Liu B, Ying R, Pande V, Leskovec J: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. arXiv 2018:1806.02473v02471
Dimova D, Stumpfe D, Bajorath J (2014) Method for the evaluation of structure-activity relationship information associated with coordinated activity cliffs. J Med Chem 57:6553–6563
CAS
PubMed
Google Scholar
Stumpfe D, Hu Y, Dimova D, Bajorath J (2014) Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem 57(1):18–28
CAS
PubMed
Google Scholar
Stumpfe D, Dimova D, Bajorath J (2014) Composition and topology of activity cliff clusters formed by bioactive compounds. J Chem Inf Model 54(2):451–461
CAS
PubMed
Google Scholar
Teixeira AL, Leal JP, Falcao AO (2013) Random forests for feature selection in QSPR models—an application for predicting standard enthalpy of formation of hydrocarbons. J Cheminform 5(1):9
CAS
PubMed
PubMed Central
Google Scholar
Ambure P, Halder AK, Gonzalez Diaz H, Cordeiro M (2019) QSAR-co: an open source software for developing robust multitasking or multitarget classification-based QSAR models. J Chem Inf Model 59(6):2538–2544
CAS
PubMed
Google Scholar
Zupan J, Gasteiger J (1993) Neural networks for chemists. Verlag Chemie, Weinheim
Google Scholar
Livingstone D (1995) Data analysis for chemists. Oxford University Press, Oxford
Google Scholar
Mahé P, Vert JP (2009) Virtual screening with support vector machines and structure kernels. Comb Chem High Throughput Screen 12(4):409–423
PubMed
Google Scholar
O’Hagan S, Kell DB (2015) The KNIME workflow environment and its applications in Genetic Programming and machine learning. Genetic Progr Evol Mach 16:387–391
Google Scholar
LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
CAS
PubMed
Google Scholar
Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
PubMed
Google Scholar
Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35(1):3–14
CAS
PubMed
Google Scholar
Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow PM, Zietz M, Hoffman MM et al (2018) Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface 15(141):20170387
PubMed
PubMed Central
Google Scholar
Mater AC, Coote ML (2019) Deep Learning in Chemistry. J Chem Inf Model 59(6):2545–2559
CAS
PubMed
Google Scholar
Coley CW, Barzilay R, Green WH, Jaakkola TS, Jensen KF (2017) Convolutional embedding of attributed molecular graphs for physical property prediction. J Chem Inf Model 57(8):1757–1772
CAS
PubMed
Google Scholar
Weininger D (1988) SMILES, a chemical language and information system.1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28(1):31–36
CAS
Google Scholar
Dai H, Tian Y, Dai B, Skiena S, Song L (2018) Syntax-directed variational autoencoder for structured data. arXiv. 1802.08786v08721
Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar Variational Autoencoder. arXiv. 1703.01925v01921
Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen HM (2018) Application of generative autoencoder in de novo molecular design. Mol Inform 37(1–2):1700123
Google Scholar
Xu Y, Lin K, Wang S, Wang L, Cai C, Song C, Lai L, Pei J (2019) Deep learning for molecular generation. Future Med Chem 11(6):567–597
CAS
PubMed
Google Scholar
O’Boyle N, Dalke A (2018) DeepSMILES: an adaptation of SMILES for use in machine-learning of chemical structures. ChemRxiv. 7097960.v7097961
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Boston
Google Scholar
Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackerman Z et al (2020) A deep learning approach to antibiotic discovery. Cell 180(4):688–702
CAS
PubMed
PubMed Central
Google Scholar
Zahoránszky-Kőhalmi G, Bologa CG, Oprea TI (2016) Impact of similarity threshold on the topology of molecular similarity networks and clustering outcomes. J Cheminform 8:16
PubMed
PubMed Central
Google Scholar
Segler MHS, Kogej T, Tyrchan C, Waller MP (2017) Generating focussed molecule libraries for drug discovery with recurrent neural networks. arXiv. 1701.01329v01321
van Deursen R, Ertl P, Tetko IV, Godin G (2020) GEN: highly efficient SMILES explorer using autodidactic generative examination networks. J Cheminform 12(1):22
PubMed Central
PubMed
Google Scholar
O’Hagan S, Kell DB (2017) Consensus rank orderings of molecular fingerprints illustrate the ‘most genuine’ similarities between marketed drugs and small endogenous human metabolites, but highlight exogenous natural products as the most important ‘natural’ drug transporter substrates. ADMET DMPK 5(2):85–125
Google Scholar
Kajino H (2018) Molecular hypergraph grammar with its application to molecular optimization. arXiv. 1809.02745v02741
Jin W, Barzilay R, Jaakkola T. Junction tree variational autoencoder for molecular graph generation. arXiv 2018:1802.04364v04362
Zang C, Wang F (2020) MoFlow: an invertible flow model for generating molecular graphs. arXiv. 2006.10137
Tavakoli M, Baldi P (2020) Continuous representation of molecules using graph variational autoencoder. arXiv:2004.08152v08151
Samanta B, De A, Ganguly N, Gomez-Rodriguez M (2018) Designing random graph models using variational autoencoders with applications to chemical design. arXiv.1802.05283
Flam-Shepherd D, Wu T, Aspuru-Guzik A (2020) Graph deconvolutional generation. arXiv. 2002.07087v07081
Kearnes S, McCloskey K, Berndl M, Pande V, Riley P (2016) Molecular graph convolutions: moving beyond fingerprints. J Comput Aided Mol Des 30(8):595–608
CAS
PubMed
PubMed Central
Google Scholar
Bresson X, Laurent T (2019) A two-step graph convolutional decoder for molecule generation. arXiv. 1906.03412
Kearnes S, Li L, Riley P (2019) Decoding molecular graph embeddings with reinforcement learning. arXiv. 1904.08915
Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Cui P, Zhu W (2018) Deep learning on graphs: a survey. arXi: 1812.04202v04201
Barron JT (2017) A general and adaptive robust loss function. arXiv. 1701.03077v03010
Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M et al (2019) Analyzing learned molecular representations for property prediction. arXiv. 1904.01561v01564
Yang K, Swanson K, Jin W, Coley C, Eiden P, Gao H, Guzman-Perez A, Hopper T, Kelley B, Mathea M et al (2019) Analyzing learned molecular representations for property prediction. J Chem Inf Model 59(8):3370–3388
CAS
PubMed
PubMed Central
Google Scholar
Goodacre R, Trew S, Wrigley-Jones C, Saunders G, Neal MJ, Porter N, Kell DB (1995) Rapid and quantitative analysis of metabolites in fermentor broths using pyrolysis mass spectrometry with supervised learning: application to the screening of Penicillium chryosgenum fermentations for the overproduction of penicillins. Anal Chim Acta 313:25–43
CAS
Google Scholar
Jarrett K, Kavukcuoglu K, Ranzato M, Lecun Y (2009) What is the best multi-stage architecture for object recognition? IEEE I Conf Comp Vis; pp. 2146–2153
Ashkezari-Toussi S, Sadoghi-Yazdi H (2019) Robust diffusion LMS over adaptive networks. Signal Process 158:201–209
Google Scholar
Guimaraes GL, Sanchez-Lengeling B, Outeiral C, Farias PLC, Aspuru-Guzik A (2017) Objective-Reinforced Generative Adversarial Networks (ORGAN) for sequence generation models. arXiv. 1705.10843
Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J Cheminform 1(1):8
PubMed
PubMed Central
Google Scholar
Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms. arXiv. 1707.06347v06342
Schulman J, Moritz P, Levine S, Jordan M, Abbeel P (2015) High-dimensional continuous control using generalized advantage estimation. arXiv. 1506.02438
Levine S, Koltun V (2013) Guided policy search. Proc ICML 28:1–9
Google Scholar
Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. Proc AISTATs 9:249–256
Google Scholar
Li Y, Wei C, Ma T (2019) Towards explaining the regularization effect of initial large learning rate in training neural networks. arXiv. 1907.04595v04592
Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337
CAS
PubMed
PubMed Central
Google Scholar
Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA et al (2012) Automated design of ligands to polypharmacological profiles. Nature 492(7428):215–220
CAS
PubMed
Google Scholar
Nettles JH, Jenkins JL, Bender A, Deng Z, Davies JW, Glick M (2006) Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J Med Chem 49(23):6802–6810
CAS
PubMed
Google Scholar
Hu G, Kuang G, Xiao W, Li W, Liu G, Tang Y (2012) Performance evaluation of 2D fingerprint and 3D shape similarity methods in virtual screening. J Chem Inf Model 52(5):1103–1113
CAS
PubMed
Google Scholar
Oprea TI (2002) On the information content of 2D and 3D descriptors for QSAR. J Brazil Chem Soc 13(6):811–815
CAS
Google Scholar
Brown RD, Martin YC (1997) The information content of 2D and 3D structural descriptors relevant to ligand-receptor binding. J Chem Inf Comp Sci 37(1):1–9
CAS
Google Scholar
Hong HX, Xie Q, Ge WG, Qian F, Fang H, Shi LM, Su ZQ, Perkins R, Tong WD (2008) Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 48(7):1337–1344
CAS
PubMed
Google Scholar
Hann MM, Keserü GM (2012) Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat Rev Drug Discov 11(5):355–365
CAS
PubMed
Google Scholar
Pitt WR, Parry DM, Perry BG, Groom CR (2009) Heteroaromatic rings of the future. J Med Chem 52:2952–2963
CAS
PubMed
Google Scholar
Roughley SD, Jordan AM (2011) The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J Med Chem 54(10):3451–3479
CAS
PubMed
Google Scholar
Scalia G, Grambow CA, Pernici B, Li Y-P, Green WH (2019) Evaluating scalable uncertainty estimation methods for DNN-based molecular property prediction. arXiv. 1910.03127
Brown N, Fiscato M, Segler MHS, Vaucher AC (2019) GuacaMol: benchmarking models for de novo molecular design. J Chem Inf Model 59(3):1096–1108
CAS
PubMed
Google Scholar