Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431. https://doi.org/10.1016/S1359-6446(04)03069-7
Article
PubMed
Google Scholar
Abad-Zapatero C, Perisic O, Wass J, Bento PA, Overington J, Al-Lazikani B, Johnson ME (2010) Ligand efficiency indices for an effective mapping of chemico-biological space: the concept of an atlas-like representation. Drug Discov Today 15:804–811. https://doi.org/10.1016/j.drudis.2010.08.004
Article
CAS
PubMed
Google Scholar
Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH (2014) The role of ligand efficiency metrics in drug discovery. Nat Rev Drug Discov 13:105–121. https://doi.org/10.1038/nrd4163
Article
CAS
PubMed
Google Scholar
Meanwell NA (2016) Improving drug design: an update on recent applications of efficiency metrics, strategies for replacing problematic elements, and compounds in nontraditional drug space. Chem Res Toxicol 29:564–616. https://doi.org/10.1021/acs.chemrestox.6b00043
Article
CAS
PubMed
Google Scholar
Cavalluzzi MM, Mangiatordi GF, Moro A, Nicolotti O, Lentini G (2017) Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Expert Opin Drug Discov 12:1087–1104. https://doi.org/10.1080/17460441.2017.1365056
Article
CAS
PubMed
Google Scholar
Young RJ, Leeson PD (2018) Mapping the efficiency and physicochemical trajectories of successful optimizations. J Med Chem 61:6421–6467. https://doi.org/10.1021/acs.jmedchem.8b00180
Article
CAS
PubMed
Google Scholar
Zhou HX, Gilson MK (2009) Theory of free energy and entropy in noncovalent binding. Chem Rev 109:4092–4107. https://doi.org/10.1021/cr800551w
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenny PW, Leitão A, Montanari CA (2014) Ligand efficiency metrics considered harmful. J Comput Aided Mol Des 28:699–710. https://doi.org/10.1007/s10822-014-9757-8
Article
CAS
PubMed
Google Scholar
Matta CF, Massa L, Gubskaya AV, Knoll E (2011) Can one take the logarithm or the sine of a dimensioned quantity or a unit? Dimensional analysis involving transcendental functions. J Chem Educ 88:67–70. https://doi.org/10.1021/ed1000476
Article
CAS
Google Scholar
Birch AM, Kenny PW, Simpson I, Whittamore PRO (2009) Matched molecular pair analysis of activity and properties of glycogen phosphorylase inhibitors. Bioorg Med Chem Lett 19:850–853. https://doi.org/10.1016/j.bmcl.2008.12.003
Article
CAS
PubMed
Google Scholar
Chodera JD, Mobley DL, Shirts MR, Dixon RW, Branson K, Pande VS (2011) Alchemical free energy methods for drug discovery: progress and challenges. Curr Opin Struct Biol 21:150–160. https://doi.org/10.1016/j.sbi.2011.01.011
Article
CAS
PubMed
PubMed Central
Google Scholar
Cournia Z, Allen B, Sherman W (2017) Relative binding free energy calculations in drug discovery: recent advances and practical considerations. J Chem Inf Model 57:2911–2937. https://doi.org/10.1021/acs.jcim.7b00564
Article
CAS
PubMed
Google Scholar
Nicolaou CA, Brown N (2013) Multi-objective optimization methods in drug design. Drug Discov Today Technol 10:e427–e435. https://doi.org/10.1016/j.ddtec.2013.02.001
Article
PubMed
Google Scholar
Kenny PW, Montanari CA (2013) Inflation of correlation in the pursuit of drug-likeness. J Comput Aided Mol Des 27:1–13. https://doi.org/10.1007/s10822-012-9631-5
Article
CAS
PubMed
Google Scholar
Mateus A, Matsson P, Artursson P (2013) Rapid measurement of intracellular unbound drug concentrations. Mol Pharm 10:2467–2478. https://doi.org/10.1021/mp4000822
Article
CAS
PubMed
Google Scholar
Gordon LJ, Allen M, Artursson P, Hann MM, Leavens BJ, Mateus A, Readshaw S, Valko K, Wayne GJ, West A (2016) Direct measurement of intracellular compound concentration by RapidFire mass spectrometry offers insights into cell permeability. J Biomol Screen 21:156–164. https://doi.org/10.1177/1087057115604141
Article
CAS
PubMed
Google Scholar
Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41:1308–1315. https://doi.org/10.1021/ci010366a
Article
CAS
PubMed
Google Scholar
Hann MM, Leach AR, Harper G (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J Chem Inf Comp Sci 41:856–864. https://doi.org/10.1021/ci000403i
Article
CAS
Google Scholar
Teague SJ, Davis AM, Leeson PD, Oprea T (1999) The design of leadlike combinatorial libraries. Angew Chem Int Ed Engl 38:3743–3748. https://doi.org/10.1002/(SICI)1521-3773(19991216)38:24%3c3743:AID-ANIE3743%3e3.0.CO;2-U
Article
CAS
PubMed
Google Scholar
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:4–25. https://doi.org/10.1016/S0169-409X(96)00423-1
Article
Google Scholar
Boehm HJ, Boehringer M, Bur D, Gmuender H, Huber W, Klaus W, Kostrewa D, Kuehne H, Luebbers T, Meunier-Keller N, Mueller F (2000) Novel inhibitors of DNA gyrase: 3D structure based biased needle screening, hit validation by biophysical methods, and 3D guided optimization. A promising alternative to random screening. J Med Chem 43:2664–2674. https://doi.org/10.1021/jm000017s
Article
CAS
PubMed
Google Scholar
Blomberg N, Cosgrove DA, Kenny PW, Kolmodin K (2009) Design of compound libraries for fragment screening. J Comput Aided Mol Des 23:513–525. https://doi.org/10.1007/s10822-009-9264-5
Article
CAS
PubMed
Google Scholar
Nicholls A, McGaughey GB, Sheridan RP, Good AC, Warren G, Mathieu M, Muchmore SW, Brown SP, Grant JA, Haigh JA, Nevins N, Jain AN, Kelley B (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53:3862–3886. https://doi.org/10.1021/jm900818s
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards FM (1977) Areas, volumes, packing, and protein structure. Ann Rev Biophys Bioeng 6:151–176. https://doi.org/10.1146/annurev.bb.06.060177.001055
Article
CAS
Google Scholar
Pettit FK, Bowie JU (1999) Protein surface roughness and small molecular binding sites. J Mol Biol 285:1377–1382. https://doi.org/10.1006/jmbi.1998.2411
Article
CAS
PubMed
Google Scholar
Persch E, Dumele O, Diederich F (2015) Molecular recognition in chemical and biological systems. Angew Chem Int Ed 54:3290–3327. https://doi.org/10.1002/anie.201408487
Article
CAS
Google Scholar
Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5064. https://doi.org/10.1021/jm100112j
Article
CAS
PubMed
PubMed Central
Google Scholar
Mark AE, van Gunsteren WF (1994) Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J Mol Biol 240:167–176. https://doi.org/10.1006/jmbi.1994.1430
Article
CAS
PubMed
Google Scholar
van de Waterbeemd H, Smith DA, Beaumont K, Walker DK (2001) Property-based design: optimization of drug absorption and pharmacokinetics. J Med Chem 44:1313–1333. https://doi.org/10.1021/jm000407e
Article
CAS
Google Scholar
Meanwell NA (2011) Improving drug candidates by design: a focus on physicochemical properties as a means of improving compound disposition and safety. Chem Res Toxicol 24:1420–1456. https://doi.org/10.1021/tx200211v
Article
CAS
PubMed
Google Scholar
Keserű GM, Erlanson DA, Ferenczy GG, Hann MM, Murray CW, Pickett SD (2016) Design principles for fragment libraries: maximizing the value of learnings from pharma fragment based drug discovery (FBDD) programs for use in academia. J Med Chem 59:8189–8206. https://doi.org/10.1021/acs.jmedchem.6b00197
Article
CAS
PubMed
Google Scholar
Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002. https://doi.org/10.1073/pnas.96.18.9997
Article
CAS
PubMed
Google Scholar
Hajduk PJ (2006) Fragment-based drug design: how big is too big? J Med Chem 49:6972–6976. https://doi.org/10.1021/jm060511h
Article
CAS
PubMed
Google Scholar
Saxty G, Woodhead SJ, Berdini V, Davies TG, Verdonk ML, Wyatt PG, Boyle RG, Barford D, Downham R, Garrett MD, Carr RA (2007) Identification of inhibitors of protein kinase B using fragment-based lead discovery. J Med Chem 50:2293–2296. https://doi.org/10.1021/jm070091b
Article
CAS
PubMed
Google Scholar
Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103. https://doi.org/10.1021/ja01280a022
Article
CAS
Google Scholar
Hammett LP (1938) Linear free energy relationships in rate and equilibrium phenomena. J Chem Soc, Faraday Trans 34:156–165. https://doi.org/10.1039/TF9383400156
Article
CAS
Google Scholar
Maggiora GM (2006) On outliers and activity cliffs why QSAR often disappoints. J Chem Inf Model 46:1535. https://doi.org/10.1021/ci060117s
Article
CAS
PubMed
Google Scholar
Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942. https://doi.org/10.1021/jm201706b
Article
CAS
PubMed
Google Scholar
Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophys J 72:1047–1069. https://doi.org/10.1016/S0006-3495(97)78756-3
Article
CAS
PubMed
PubMed Central
Google Scholar
Polanski J, Tkocz A, Kucia U (2017) Beware of ligand efficiency (LE): understanding LE data in modeling structure-activity and structure-economy relationships. J Cheminform 9:49. https://doi.org/10.1186/s13321-017-0236-9
Article
CAS
PubMed
PubMed Central
Google Scholar
Leeson PD, Springthorpe B (2007) The influence of druglike concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6:881–890. https://doi.org/10.1038/nrd2445
Article
CAS
PubMed
Google Scholar
Ryckmans T, Edwards MP, Horne VA, Correia AM, Owen DR, Thompson LR, Tran I, Tutt MF, Young T (2009) Rapid assessment of a novel series of selective CB2 antagonists using parallel synthesis protocols: a lipophilic efficiency analysis. Bioorg Med Chem Lett 19:4406–4409. https://doi.org/10.1016/j.bmcl.2009.05.062
Article
CAS
PubMed
Google Scholar
Borges NM, Kenny PW, Montanari CA, Prokopozyk IM, Ribeiro JF, Rocha JR, Sartori GR (2017) The influence of hydrogen bonding on partition coefficients. J Comput Aided Mol Des 31:163–181. https://doi.org/10.1007/s10822-016-0002-5
Article
CAS
PubMed
Google Scholar
Maynard AT, Roberts CD (2016) Quantifying, visualizing, and monitoring lead optimization. J Med Chem 59:4189–4201. https://doi.org/10.1021/acs.jmedchem.5b00948
Article
CAS
PubMed
Google Scholar
Fiedler K (2011) Voodoo correlations are everywhere—not only in neuroscience. Perspect Psychol Sci 6:163–171. https://doi.org/10.1177/1745691611400237
Article
PubMed
Google Scholar
Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127–136. https://doi.org/10.1016/j.sbi.2006.01.013
Article
CAS
PubMed
Google Scholar
Cumming JG, Davis AM, Muresan S, Haeberlein M, Chen H (2013) Chemical predictive modelling to improve compound quality. Nat Rev Drug Discov 12:948–962. https://doi.org/10.1038/nrd4128
Article
CAS
PubMed
Google Scholar
Oprea TI, Hasselgren C (2017) Predicting target and chemical druggability. In: Chackalamannil S, Rotella D, Ward S (eds) Comprehensive medicinal chemistry III. Elsevier, Amsterdam, pp 429–439. https://doi.org/10.1016/B978-0-12-409547-2.12342-X
Chapter
Google Scholar
Leeson PD, Young RJ (2015) Molecular property design: does everyone get it? ACS Med Chem Lett 6:722–725. https://doi.org/10.1021/acsmedchemlett.5b00157
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott DE, Coyne AG, Hudson SA, Abell C (2012) Fragment-based approaches in drug discovery and chemical biology. Biochemistry 51:4990–5003. https://doi.org/10.1021/bi3005126
Article
CAS
PubMed
Google Scholar
Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78:4046–4050. https://doi.org/10.1073/pnas.78.7.4046
Article
CAS
PubMed
Google Scholar
Free SM, Wilson JW (1964) A Mathematical contribution to structure-activity studies. J Med Chem 7:395–399. https://doi.org/10.1021/jm00334a001
Article
CAS
PubMed
Google Scholar
Andrews PR, Craik DJ, Martin JL (1984) Functional group contributions to drug-receptor interactions. J Med Chem 27:1648–1657. https://doi.org/10.1021/jm00378a021
Article
CAS
PubMed
Google Scholar
Reynolds CH, Reynolds RC (2017) Group additivity in ligand binding affinity: an alternative approach to ligand efficiency. J Chem Inf Model 57:3086–3093. https://doi.org/10.1021/acs.jcim.7b00381
Article
CAS
PubMed
Google Scholar
Ladbury JE (2007) Enthalpic efficiency and the role of thermodynamic data in drug development: possibility or a pipeline dream. Eur Pharm Rev 12:59–62
Google Scholar
Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9. https://doi.org/10.1006/jmbi.1998.1843
Article
CAS
PubMed
Google Scholar
Edfeldt FNB, Folmer RHA, Breeze AL (2011) Fragment screening to predict druggability (ligandability) and lead discovery success. Drug Discov Today 16:284–287. https://doi.org/10.1016/j.drudis.2011.02.002
Article
CAS
PubMed
Google Scholar
Krimmer SG, Cramer J, Schiebel J, Heine A, Klebe G (2017) How nothing boosts affinity: hydrophobic ligand binding to the virtually vacated S1′ pocket of thermolysin. J Am Chem Soc 139:10419–10431. https://doi.org/10.1021/jacs.7b05028
Article
CAS
PubMed
Google Scholar
Murray CW, Erlanson DA, Hopkins AL, Keserü GM, Leeson PD, Rees DC, Reynolds CH, Richmond NJ (2014) Validity of ligand efficiency metrics. ACS Med Chem Lett 5:616–618. https://doi.org/10.1021/ml500146d
Article
CAS
PubMed
PubMed Central
Google Scholar
Reynolds CH (2015) Ligand efficiency metrics: Why all the fuss? Future Med Chem 7:1363–1365. https://doi.org/10.4155/fmc.15.70
Article
CAS
PubMed
Google Scholar
May PC, Dean RA, Lowe SL, Martenyi F, Sheehan SM, Boggs LN, Monk SA, Mathes BM, Mergott DJ, Watson BM, Stout SL, Timm DE, LaBell ES, Gonzales CR, Nakano M, Jhee SS, Yen M, Ereshefsky L, Lindstrom TD, Calligaro DO, Cocke PJ, Hall DG, Friedrich S, Citron M, Audia JE (2011) Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J Neurosci 31:16507–16516. https://doi.org/10.1523/JNEUROSCI.3647-11.2011
Article
CAS
PubMed
Google Scholar
Czaplewski LG, Collins I, Boyd EA, Brown D, East SP, Gardiner M, Fletcher R, Haydon DJ, Henstock V, Ingram P, Jones C, Noula C, Kennison L, Rockley C, Rose V, Thomaides-Brears HB, Ure R, Whittaker M, Stokes NR (2009) Antibacterial alkoxybenzamide inhibitors of the essential bacterial cell division protein FtsZ. Bioorg Med Chem Lett 19:524–527. https://doi.org/10.1016/j.bmcl.2008.11.021
Article
CAS
PubMed
Google Scholar
Doak BC, Zheng J, Dobritzsch D, Kihlberg J (2016) How beyond rule of 5 drugs and clinical candidates bind to their targets. J Med Chem 59:2312–2327. https://doi.org/10.1021/acs.jmedchem.5b01286
Article
CAS
PubMed
Google Scholar
Verlinde CLJ, Rudenko G, Hol WG (1992) In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J Comput Aided Mol Des 6:131–147. https://doi.org/10.1007/BF00129424
Article
CAS
PubMed
Google Scholar
Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment based lead discovery: leads by design. Drug Discov Today 10:987–992. https://doi.org/10.1016/S1359-6446(05)03511-7
Article
CAS
PubMed
Google Scholar
Albert JS, Blomberg N, Breeze AL, Brown AJ, Burrows JN, Edwards PD, Folmer RH, Geschwindner S, Griffen EJ, Kenny PW, Nowak T, Olsson LL, Sanganee H, Shapiro AB (2007) An integrated approach to fragment-based lead generation: philosophy, strategy and case studies from AstraZeneca’s drug discovery programmes. Curr Top Med Chem 7:1600–1629. https://doi.org/10.2174/156802607782341091
Article
CAS
PubMed
Google Scholar
Hubbard RE, Murray JB (2011) Experiences in fragment-based lead discovery. Methods Enzymol 493:509–531. https://doi.org/10.1016/B978-0-12-381274-2.00020-0
Article
CAS
PubMed
Google Scholar
Davis BJ, Roughley SD (2017) Fragment-based lead discovery. Ann Rep Med Chem 50:371–439. https://doi.org/10.1016/bs.armc.2017.07.002
Article
CAS
Google Scholar
Lamoree B, Hubbard RE (2017) Current perspectives in fragment-based lead discovery (FBLD). Essays Biochem 61:453–464. https://doi.org/10.1042/EBC20170028
Article
PubMed
PubMed Central
Google Scholar
Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29–34. https://doi.org/10.1002/prot.340110104
Article
CAS
PubMed
Google Scholar
Böhm H-J (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78. https://doi.org/10.1007/BF00124387
Article
PubMed
Google Scholar
Allen KN, Bellamacina CR, Ding X, Jeffery CJ, Mattos C, Petsko GA, Ringe D (1996) An experimental approach to mapping the binding surfaces of crystalline proteins. J Phys Chem 100:2605–2611. https://doi.org/10.1021/jp952516o
Article
CAS
Google Scholar
Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534. https://doi.org/10.1126/science.274.5292.1531
Article
CAS
PubMed
Google Scholar
McCoy MA, Wyss DF (2002) Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J Am Chem Soc 124:11758–11763. https://doi.org/10.1021/ja026166c
Article
CAS
PubMed
Google Scholar
Erlanson DA, Fesik SW, Hubbard RE, Jahnke W, Jhoti H (2016) Twenty years on: the impact of fragments on drug discovery. Nat Rev Drug Discov 15:605–619. https://doi.org/10.1038/nrd.2016.109
Article
CAS
PubMed
Google Scholar
Johnson CN, Erlanson DA, Jahnke W, Mortenson PN, Rees DC (2018) Fragment-to-lead medicinal chemistry publications in 2016. J Med Chem 61:1774–1784. https://doi.org/10.1021/acs.jmedchem.7b01298
Article
CAS
PubMed
Google Scholar
Mannhold R, Poda GI, Ostermann C, Tetko IV (2009) Calculation of molecular lipophilicity: state-of-the-art and comparison of log P methods on more than 96000 compounds. J Pharm Sci 98:861–893. https://doi.org/10.1002/jps.21494
Article
CAS
PubMed
Google Scholar
Congreve M, Carr R, Murray C, Jhoti H (2003) A “rule of three” for fragment-based lead discovery? Drug Discov Today 8:876–877. https://doi.org/10.1016/S1359-6446(03)02831-9
Article
PubMed
Google Scholar
Köster H, Craan T, Brass S, Herhaus C, Zentgraf M, Neumann L, Heine A, Klebe GA (2011) Small nonrule of 3 compatible fragment library provides high hit rate of endothiapepsin crystal structures with various fragment chemotypes. J Med Chem 54:7784–7796. https://doi.org/10.1021/jm200642w
Article
CAS
PubMed
Google Scholar
Meanwell NA (2011) Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem 54:2529–2591. https://doi.org/10.1021/jm1013693
Article
CAS
PubMed
Google Scholar
Herr RJ (2002) 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393. https://doi.org/10.1016/S0968-0896(02)00239-0
Article
CAS
PubMed
Google Scholar
Ammazzalorso A, De Filippis B, Giampietro L, Amoroso R (2017) N-acylsulfonamides: synthetic routes and biological potential in medicinal chemistry. Chem Biol Drug Des 90:1094–1105. https://doi.org/10.1111/cbdd.13043
Article
CAS
PubMed
Google Scholar
Geschwindner S, Olsson LL, Albert JS, Deinum J, Edwards PD, Beer T, Folmer RH (2007) Discovery of a novel warhead against beta-secretase through fragment-based lead generation. J Med Chem 50:5903–5911. https://doi.org/10.1021/jm070825k
Article
CAS
PubMed
Google Scholar
Edwards PD, Albert JS, Sylvester M, Aharony D, Andisik D, Callaghan O, Campbell JB, Carr RA, Chessari G, Congreve M, Frederickson M, Folmer RH, Geschwindner S, Koether G, Kolmodin K, Krumrine J, Mauger RC, Murray CW, Olsson LL, Patel S, Spear N, Tian G (2007) Application of fragment-based lead generation to the discovery of novel, cyclic amidine beta-secretase Inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J Med Chem 50:5912–5925. https://doi.org/10.1021/jm070829p
Article
CAS
PubMed
Google Scholar
Silva DG, Ribeiro JFR, De Vita D, Cianni L, Franco CH, Freitas-Junior LH, Moraes CB, Rocha JR, Burtoloso ACB, Kenny PW, Leitão A, Montanari CA (2017) A comparative study of warheads for design of cysteine protease inhibitors. Bioorg Med Chem Lett 27:5031–5035. https://doi.org/10.1016/j.bmcl.2017.10.002
Article
CAS
PubMed
Google Scholar
Verdonk ML, Rees DC (2008) Group efficiency: a guideline for hits-to-leads chemistry. ChemMedChem 3:1179–1180. https://doi.org/10.1002/cmdc.200800132
Article
CAS
PubMed
Google Scholar
Bridges AJ, Zhou H, Cody DR, Rewcastle GW, McMichael A, Showalter HD, Fry DW, Kraker AJ, Denny WA (1996) Tyrosine kinase inhibitors. 8. An unusually steep structure-activity relationship for analogues of 4-(3-bromoanilino)-6,7- dimethoxyquinazoline (PD 153035), a potent inhibitor of the epidermal growth factor receptor. J Med Chem 39:267–276. https://doi.org/10.1021/jm9503613
Article
CAS
PubMed
Google Scholar
Dill KA (1997) Additivity principles in biochemistry. J Biol Chem 272:701–704. https://doi.org/10.1074/jbc.272.2.701
Article
CAS
PubMed
Google Scholar
Baum B, Muley L, Smolinski M, Heine A, Hangauer D, Klebe G (2010) Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J Mol Biol 397:1042–1054. https://doi.org/10.1016/j.jmb.2010.02.007
Article
CAS
PubMed
Google Scholar
Biela A, Betz M, Heine A, Klebe G (2012) Water makes the difference: rearrangement of water solvation layer triggers non-additivity of functional group contributions in protein–ligand binding. ChemMedChem 7:1423–1434. https://doi.org/10.1002/cmdc.201200206
Article
CAS
PubMed
Google Scholar
Kramer C, Fuchs JE, Liedl KR (2015) Strong nonadditivity as a key structure–activity relationship feature: distinguishing structural changes from assay artifacts. J Chem Inf Model 55:483–494. https://doi.org/10.1021/acs.jcim.5b00018
Article
CAS
PubMed
PubMed Central
Google Scholar
Calabrò G, Woods CJ, Powlesland F, Mey ASJS, Mulholland AJ, Michel J (2016) Elucidation of nonadditive effects in protein-ligand binding energies: thrombin as a case study. J Phys Chem B 120:5340–5350. https://doi.org/10.1021/acs.jpcb.6b03296
Article
CAS
PubMed
Google Scholar
Murray CW, Carr MG, Callaghan O, Chessari G, Congreve M, Cowan S, Coyle JE, Downham R, Figueroa E, Frederickson M, Graham B, McMenamin R, O’Brien MA, Patel S, Phillips TR, Williams G, Woodhead AJ, Woolford A (2010) Fragment-based drug discovery applied to Hsp90. Discovery of two lead series with high ligand efficiency. J Med Chem 53:5942–5955. https://doi.org/10.1021/jm100059d
Article
CAS
PubMed
Google Scholar
Shultz MD (2013) Setting expectations in molecular optimizations: strengths and limitations of commonly used composite parameters. Bioorg Med Chem Lett 23:5980–5991. https://doi.org/10.1016/j.bmcl.2013.08.029
Article
CAS
PubMed
Google Scholar
Reynolds CH, Tounge BA, Bembenek SD (2008) Ligand binding efficiency: trends, physical basis, and implications. J Med Chem 51:2432–2438. https://doi.org/10.1021/jm701255b
Article
CAS
PubMed
Google Scholar
Sheridan RP (2016) Debunking the idea that ligand efficiency indices are superior to pIC50 as QSAR activities. J Chem Inf Model 56:2253–2262. https://doi.org/10.1021/acs.jcim.6b00431
Article
CAS
PubMed
Google Scholar